IRON, RUTHENIUM AND OSMIUM

ANNUAL SURVEY COVERING THE YEAR 1973

J.A. McCLEVERTY

Chemistry Department, The University, Sheffield S3 7HF (Great Britain)

Contents

Metal carbonyls	274
Simple carbonyls and carbonylate anions	274
Monomeric species containing Group V donor atoms	275
Bimetallic species	276
Trimetallic and other metal atom cluster compounds	285
Metal—metal bonded species involving Group IV atoms	294
Complexes containing cyclic N-donor atom ligands	295
Halide, hydride and other complexes of M^{Π}	297
Metal isocyanides.	304
Metal nitrosyl and aryldiazo compounds	307
Mononitrosyl compounds	307
Dipitrosyl complexes	309
Aryldiazo complexes	310
n-Cyclonentadienyl complexes	312
Binuclear cyclopentadienyl compounds	312
Monomeric cationic species	316
Complexes containing $M - C$ <i>a</i> -bonds, and carbene species	316
Decarbonylation, carbonylation and carboxylation reactions	320
Addition and insertion reactions	320
Complexes containing Group IVB elements and mercury	327
Complexes containing Group VB donor atoms	329
Compounds containing sulfur	331
Halide cyanide and other complexes	332
Metallo-borane and -carborane cluster compounds	334
Cyclobutadiene, trimethylenemethane and arene complexes	336
Cyclobutadienemetal compounds	336
Trimethylenemethane complexes	340
Arene complexes	341
Allyl and dienyl complexes	341
Monoallyl empires	341
Bi-alty complexes	344
Manameric allal species derived from cyclic olefins	344
Di- and tri-metallic allyl complexes	347
Dienvi complexes	348
Partalonul complexes	350
	350
Oterni complexes.	000

Mono-olefinic compounds		-			-	350
Non-conjugated diene complexes	-					351
Conjugated non-cyclic diene complexes						354
Non-cyclic heterodiene complexes						355
Conjugated cyclic diene complexes .					-	357
Polyene complexes						361
Complexes containing metal-carbon o bonds, and carbenes		-				365
Metal carbonyl complexes				-		365
Metallocyclopentadienyl complexes			-			366
o Metallated compounds					-	366
Alkylmetals				-		367
Carbene complexes		-		-	-	368
Organic reactions catalysed or promoted by iron or ruthenium complexes				-		369
Hydrogenation				-		369
Formation and reactions of ketones and related species						370
Other reactions				-		371
References		-	-			372

Metal carbonyls

Simple carbonyls and carbonylate anions

UV photolysis of $Fe(CO)_3$ in an argon matrix at low temperatures gave $Fe(CO)_4$ and CO [1]. Recombination to give $Fe(CO)_3$ occurred if the irradiation time was short but if prolonged, formation of the tetracarbonyl was irreversible since CO diffused through the matrix. The $Fe(CO)_4$ formed had $C_{3\nu}$ symmetry since there was apparently Jahn–Teller distortion of the idealised tetrahedral geometry. An ion–cyclotron resonance study of ion–molecule reactions of $Fe(CO)_3$ has been carried out [2]. The most abundant primary ion was $[Fe(CO)_4]^-$, although some $[Fe(CO)_3]^-$ was also detected. The major product observed was $[Fe_2(CO)_6]^-$, apparently formed in the reaction 1.

$$[Fe(CO)_3]^- + Fe(CO)_5 \rightarrow [Fe_2(CO)_6]^{2-} + 2CO$$
(1)

 $[Fe(CO)_4]$ did not appear to undergo any condensation reactions.

By electrolysis of Fe(acac)₃ in pyridine or dimethylsulfoxide under CO (1 atm) a series of carbonyls and carbonylate ions was prepared [3]. Thus, in pyridine at low current, Fe(CO)₅ and Fe₃(CO)₁₂ were produced, whereas at higher currents [Fe(CO)₄]^{2⁻} and [Fe₄(CO)₁₃]^{2⁻} were formed. In dimethylsulf-oxide, [Fe₂(CO)₈]^{2⁻} and [Fe₄(CO)₁₃]^{2⁻} were produced.

The structure [4] of $[Fe(CO),H]^-$, as the $[(Ph_3P),N]^+$ salt, is that of a distorted trigonal bipyramid (1)*, in which the Fe-H distance is 1.57 Å; the

Throughout this article compounds are indicated by bold arabic numerals; references are as usual in square brackets.

angles between the apical and the equatorial CO groups are 96.9, 98.4 and 101.9°. The most stable species present when $Fe(CO)_5$ was dissolved in methanol under CO pressure below 150°, in the presence of water and tertiary amine, was $[Fe(CO)_4$ - $H]^-$ [5]. The concentration of this hydride decreased with increasing temperature until the only species at 150° was $Fe(CO)_5$. At 170°, when hydrogen was also present, complete conversion of $Fe(CO)_5$ to $[Fe(CO)_4H]^-$ occurred in 10 hours. The mechanism of reaction appeared to involve prior dissociation of CO, giving $Fe(CO)_4$, which underwent oxidative addition with H_2 giving $Fe(CO)_4H_2$, and, in the presence of NR₃, proton abstraction from this acidic hydride gave $[Fe(CO)_4H]^-$.

Reduction of $Os_3(CO)_{12}$ with sodium in liquid ammonia afforded [6] a cream solid which may have contained $[Os(CO)_4H]^-$. Acidification gave Os- $(CO)_4H_2$, and with $[Ni(bipy)_3]^{2^+}$, $[Ni(bipy)_3][Os(CO)_4]$ was precipitated. Treatment of the cream solid with RX (R = Me, GeH₃, SnPh₃, Au(PPh₃) gave *cis*-Os(CO)_4X_2 (X = halide) and only small amounts of Os(CO)_4HX; with SnCl₂-Me₂, $[Os(CO)_4SnMe_2]_2$ was formed.

Addition of acetic formic anhydride to $Na_2[Fe(CO)_4]$ in THF at 25° gave [7] $[Fe(CO)_4(CHO)]^-$, isolated as the $[N(PPh_3)_2]^+$ salt. This formyl derivative slowly decarbonylated giving $[Fe(CO)_4H]^-$, but the reverse process, CO insertion into the Fe—H bond, did not occur. Reaction of $[Fe(CO)_4(CHO)]^-$ with acid gave formaldehyde, and with O₂ performic acid may have been formed; with octyliodide, octane and traces of nonanal were produced.

Monomeric species containing Group V donor atoms

The structure of the compound prepared [8] by treating $Fe_3(CO)_4$, with 3,3-bis(methoxycarbonyl)-4-phenyl-1-pyrazoline (2) has been determined. The N atom adjacent to the di-substituted methylene group was bonded to the metal atom in an apical position.

Reaction of Na, $[Fe(CO)_{4}]$ with QPh₂Cl (Q = P or As) afforded [9] [Fe- $(CO)_{4}QPh_{2}]^{-}$ (apical Q). Treatment of this with RX (R = Me, Q = P; R = CH₂-C(Me)=CH₂, CH₂Ph, CH₂CO₂Et, CH₂C=CH, GePh₃, Fe(CO)₂(π -C₅H₅), Q = As) gave Fe(CO), QPh, R, and with Q'Ph, Cl, Fe(CO), Q(Ph, Q'Ph, (Fe-Q bonded), was isolated. Fe(CO); reacted with P(CH_SiMe_3); (siphos) giving [10] Fe(CO). (siphos) and trans-Fe(CO)₃(siphos)₂; Hg[Fe(CO)₃(NO)]₂ afforded Hg[Fe(CO)₂-(NO)(siphos)]2. An X-ray crystallographic structural determination [11] of $Fe(CO)_{4}[PCl\{(OCH_{2})_{2}CMe_{2}\}]$ revealed that the dioxaphosphorane ring had a "chair" structure and that the Fe atom was attached to an equatorial position. A similar study of Fe(CO)₃(Ph₂PCH₂PPh₂) established [12] that the coordination geometry was an intermediate between trigonal bipyramidal and square pyramidal. It was observed that this would lead to the expectation of very rapid site exchange of the CO groups on the 13C NMR time scale. The structure of a complex (3) obtained [13] by treating 2-vinylphenyldiphenylphosphine with iron carbonyl has been determined [14]. The molecule has approximate trigonal bipyramidal geometry and the Fe-P distance (2.21 Å) associated with the chelated ligand is significantly shorter than that associated with the unidentate ligand (2.24 Å). The π -bonded vinyl group is symmetrically bonded to the iron atom.

Room temperature Mössbauer spectral parameters for a series of tertiary

phosphine and phosphite complexes, $Fe(CO)_4L$ and $Fe(CO)_4L_2$, have been measured [15]. The trend in isomer shift values was interpreted in terms of a dominant *o*-interaction backed up by π -bonding due to the synergic effect. From a study of Mössbauer spectral measurements of the asymmetry parameter of the electric field gradient and the sign of the ^{57m} Fe quadrupole splitting, it was shown [15] that, in Fe(CO)₅, Fe(CO)₄(PPh₃), Fe(CO)₃(PPh₃)₂, Fe₂(CO)₈. (diphos) and Fe(CO)₃(diphos) (diphos = Ph₂PCH₂CH₂PPh₂), a lack of axial symmetry could be detected, but no more detailed stereochemical information could be obtained.

Photolysis of $Fe(CO)_3[P(p-MeC_6H_4)_3]_2$ in the presence of CO, and in a matrix or in solution, led [16] to the formation of $Fe(CO)_4[P(p-MeC_6H_4)_3]$. In the absence of CO, the reaction was reversible. Similar treatment of $(\pi - C_4H_4)Fe(CO)_3$, in the absence of CO, led only to the formation of $(\pi - C_4H_4)Fe(CO)_2$, and there was no evidence for the release of cyclobutadiene.

Treatment of $Fe(CO)_4(PF_2Br)$ with 4 gave [17] 5 but no 6, and with Na[OC(CF₃)₂(CN)] the volatile $Fe(CO)_4[PF_2\{O(CF_3)_2(CN)\}]$ was formed. With an excess of Na[OC(CF₃)₂(CN)] the last afforded 7.

Bimetallic species

Treatment of $Fe_2(CO)_5$, with $Na_2[Cr(CO)_5]$ gave [18] $Na_2[(OC)_5CrFe_5]$

 $(CO)_4$]. A resonance Raman spectral study of $Fe_2(CO)_4(C_2-t-Bu_2)_2$ (8) afforded [19] the stretching force constant for the Fe—Fe bond (3.0 ± 0.4 mdyn /Å) which was roughly twice that expected for an Fe—Fe single bond.

Reaction of $Fe_2(CO)_9$ with N-trimethylsilyl-benzophenonimine gave [20] 9, in which the inequivalence of the iron atoms could be detected by Mössbauer spectroscopy. Phthalazine reacted with iron carbonyls giving [21] a series of binuclear phthalazine-containing species, as indicated in Scheme 1.

SCHEME 1

Displacement of CO occurred when $Fe_2(CO)_6(C_{12}H_8N_2)$ ($C_{12}H_8N_2 = benzo[c]$ cinnoline) was treated [22] with tertiary phosphines, AsPh₃, phosphites, or CNC_6H_{11} , and $Fe_2(CO)_5L(C_{12}H_8N_2)$ and $Fe_2(CO)_4L_2(C_{12}H_8N_2)$ were formed. Spectral studies indicated that substitution occurred preferentially at a site or sites *trans* to the Fe—Fe bond, viz. 10 and 11, although, occasionally, another

isomer, possibly 12, was detected. This behaviour was very similar to that of $Fe_2(CO)_{\circ}(SR)_2$. The Fe—Fe distance in $Fe_2(CO)_{\circ}[S(NH)C_{\circ}H_4]$ (13), determined crystallographically [23], is 2.41 Å.

The species obtained by treating $(\pi - C_5H_5)Ni(\mu - CO)(\mu - PPh_2)Fe(CO)_3$ with PhC=CPh, originally formulated [24] as 14, has been shown by X-ray crystallography [25], to be 15. The iron atom has a distorted octahedral geometry and the Ni—Fe distance is 2.44 Å, in good agreement with that found in (OC)_3Fe-(MeC_2Me)_2Ni(\pi - C_4Me_4) [26]. The P atom interacts only with the iron atom, and is attached to "C(5)" which is effectively inserted into the original Ni—P bond. The Ni—Fe bond is bridged asymmetrically by C(4) and the important bond distances are Ni—C(4) 1.90, Ni—C(5) 2.00, Fe—C(4) 2.00, Ni—P 2.78 (non-bridging), Fe—P 2.20 and C(4)—C(5) 1.45 Å. Reaction of Ph_2PC=CPh with Fe_2(CO)_9 afforded [27] Fe_2(CO)_6(Ph_2PC_2Ph) (16). The acetylide group functions as a one-electron donor to one iron atom via a σ -bond (Fe—C 1.89 Å) and as a two-electron donor to the other via a π -bond (Fe—C 2.13 and 2.30 Å). The Fe—Fe and C—C (acetylide) distances are 2.58 and 1.23 Å, respectively (C=C is 1.20 Å). Reaction of C₇H_8Fe(CO)_3 with Ph_2PC=CCF_3(L) gave Fe(CO)_4L and Fe(CO)_3L_2.

CF₃ CF3 CFa Fe(CO) (OC)₃Fe F₃C e(CO), Fe (19)(18)(CO)4 (20)CFa F₂C FaC (OC)₂F e(CO)₂ (OC)₃Fe Fe(CO)₂ Fe (22) (CO)₄

(21)

 $[P(p-MeC_{6}H_{4})_{2}]H$. X-ray crystallographic studies [29], however, have established that this species contains a bridging OH group, viz. 17; the Fe–Fe distance is 2.51 Å. Treatment of Fe₂(CO)₉ with the cyclic diphosphine 18 gave [30] 19 and 20 (an alternative formulation of the latter is 21). With $[P(CF_{3})_{2}]_{4}$, however, Fe₂(CO)₉ gave only 22.

UV irradiation of $Fe_2(CO)_0(f_4asp)$ ($f_4asp = 23$) gave $Fe_2(CO)_4(f_4asp)_2$, the structure of which, 24, has been determined [31]. One iron atom (Fe_A), has an approximate distorted octahedral geometry while the other is in an approximately trigonal bipyramidal environment; the Fe_A — Fe_B distance is 2.87 Å. The two diastereomers of 25 (L—L) reacted [32] with $Fe(CO)_5$ giv-

 CF_3

CF Me P'n

(27)

ing $Fe(CO)_{3}(L-L)$ and $Fe_{2}(CO)_{6}(L-L)$. Two of the three possible geometric isomers of the latter were obtained, and their properties permitted an assignment of the configuration of (L-L). These isomers are probably 26 and 27. Minor amounts of symmetric and asymmetric forms of $[Fe(CO)_3AsMePh]_2$ were also detected.

(28)

UV irradiation of $(OC)_4$ Fe $(\mu$ -AsMe₂)Mn $(CO)_5$ afforded 28 [33], in which each metal atom has an octahedral geometry and the Fe—Mn distance is 2.85 Å

Thiocyanogen reacted with Fe(CO); giving [34] the polymeric [Fe(CO)_- $(SCN)_2]_n$. The kinetics and mechanism of CO substitution by tertiary phosphine, phosphite or AsPh₃ in $Fe_2(CO)_6(S_2C_6H_3Me)$ and $Fe_2(CO)_6(S_2C_2H_4)$ have been studied [35]. In these species, the bridging sulfur atoms are held in a rigid organic framework, and the reactions obeyed a second order rate law, being first order in each reagent and independent of CO concentration. With the species $Fe_2(CO)_{o}(SR)_2$ (where the SR groups are not joined) synanti isomerism (with respect to the orientation of the $Fe(\mu-SR)_2Fe$ system) is possible, and syn- and anti-isomers interconverted at rate comparable to those of the CO substitution reactions. These geometric isomers underwent CO substitution at different rates while obeying the same basic rate law. It

TABLE 1

Compound	M—M' (Å)	M-X-M' (°)	Nature of bridge		
Fe2(CO)6(SEt)2	2.54	68.0	Fe—S—Fe		
Fe2(SR)2(S2CR)4	2.61	72.3	Fe-S-Fe		
Fe2(NO)4(SEt)2	2.72	74.0	Fe-S-Fe		
[(π-C ₅ H ₅)Fe(CO)SMe] 2 ⁺	2.93	82 0	Fe-S-Fe		
$[(\pi-C_5H_5)Fe(CO)SPh]_2$	3.39	98.0	Fe-S-Fe		
[Fe(CO)_PdCI(PPh2)]2	2.59	72.3	Fe-P-Pd		
Fe2(CO)6(PMe2)212	3.59	102.4	Fe-P-Fe		
Os3(CO)8(PPb2)Ph(PPhC6H4)	3.10	84.1	Os-C-Os		
Os ₃ (CO) ₇ (PPb ₂) ₂ (C ₆ H ₄)	2.80 } 2.99 }	73.5 76.5	Os-P-Os		
HOs3(CO)7(PPb3)(PPb2)(C6H4)	2.89	75.0			
Os ₃ (CO) ₈ (PPb ₂)(Pb)(PPhC ₆ H ₄)	3.11	82.8			

METAL-METAL BOND LENGTHS AND METAL-BRIDGE-METAL BOND ANGLES IN IRON AND OSMIUM CARBONYL AND RELATED COMPLEXES

was proposed that substitution occurred via an $S_N 2$ or I_a process, via a 7-coordinate activated intermediate (Fig. 1).

The geometries and bonding of bi- and tri-nuclear iron and osmium carbonyl species containing bridging mercaptide, phosphide and benzyne ligands have been discussed [36]. A list of intermetallic bond distances and M-X-M'bond angles (X = bridging group) is collected in Table 1. For closely related bridged species with the same formal bond order, the metal-metal distance is very dependent on the nature of the bridging group. Thus, the M-M distance decreases as the electronegativity of the bridging group also decreases. UV irradiation of a mixture of the 1,2-dithiolato-1,2-dithioether com-

UV irradiation of a mixture of the 1,2-dithiolato-1,2-dithioether complex Ni[(MeS)₂C₂R₂][S₂C₂R₂] (R = Ph or p-MeOC₆H₄) and Fe(CO)₅ afforded SCHEME 2

[37] free $(MeS)_2C_2R_2$, 29 and 30 (Q = S). The last was also produced in low yield by similar treatment of mixtures containing Ni(L-L)(S₂C₂R₂) (L-L = diphos or *o*-phen). The mechanistic pathway whereby these various species were thought to be produced is outlined in Scheme 2. The species 31, which contains *trans*-CO groups, was also isolated. Thio- or seleno-keto carbene complexes analogous to 30 (Q = S or Se), could also be obtained by thermolysis or irradiation of 32 (R = H or Ph) in the presence of iron carbonyls. Some reactions of 30 (Q = S) are summarised in Scheme 3.

SCHEME 3

When o-ethylthiobenzoate reacted [38] with $Fe_2(CO)_9$, a series of organosulfur-containing compounds, together with $Fe_3(CO)_9S_2$, were produced (see

Scheme 4). When the OEt group was replaced by NMe₂, Fe₃(CO)₉S₂, 34 and 35 were formed. It would appear that the N atom, being a better donor than the O atom, inhibited benzene ring *ortho*-metallation. However, in turn, the O atom is a more effective donor than the benzene ring itself, and so donor ligand atom complexation predominated over ring metallation. Reaction of thiobenzophenones with Fe₂(CO)₉ gave the *o*-metallated product 36, together

SCHEME 5

with 37, 38, and $Fe_3(CO)_9S_2$. Some reactions of 36 are given in Scheme 5. Treatment of $C_6D_5C(=S)(p-MeOC_6H_4)$ with $Fe_2(CO)_9$ gave 39 and 40, and bromination of the former afforded 41 proving that cyclisation occurred onto the ring previously bound to the metal. Reaction of 38 with LiAlD₄ gave Ar₂-CD(SH), which subsequently dimerised. However, similar treatment of 42 gave 43. When thiobenzophenones containing blocked aryl groups were used, the

reaction products obtained with $Fe_2(CO)_9$ were different. Thus $(C_9H_2Me_3)_2CS$ gave $Fe_3(CO)_9S_2$, 44 and 45. The compounds $(R^1R^2CS)_2$ did not react with Fe_2 -(CO)₉, but with 46 afforded $Fe_3(CO)_9S_2$, and species of the type 36, 37 and 38. This paper [39] was an extremely useful source of references to *o*-metallation reactions (see also page 366).

Trimetallic and other metal atom cluster compounds

Reaction of $Fe_3(CO)_{12}$ with $Me_2AsCXYCF_2AsMe_2$ (X = Y = H; X = H, Y = F; X = F, Y = CF₃) afforded [40] $Fe(CO)_3(Me_2AsCXYCF_2AsMe_2)$ (X = F, Y = CF₃), $Fe_2(CO)_6(AsMe_2)_2$ and 47. The Mössbauer spectra of these complexes, together with those of $Fe_3(CO)_9$ derivatives of 23, were also reported. $Fe(CO)_5$ reacted with AsF_3 in benzene at 120° to give [41] Fe_3 -(CO)₉As₂ (48). The mean Fe—Fe distance, 2.62 Å compared favorably with that in

 $Fe_3(CO)_{12}$ (2.63 Å) [42] and $[Fe_3(CO)_{11}H]^-$ (2.62 Å) [43]. Both arsenic atoms were bonded equally to the Fe₃ triangle (Fe—As 2.33 Å). It was suggested that in the paramagnetic $Fe_3(CO)_{11}As_2$ (obtained [44] from AsCl₃ and $[Fe(CO)_4]^{2^-}$) two additional CO groups might be inserted into either terminal or bridging positions in the $Fe_3(CO)_9As_2$ cluster.

A kinetic study has been made [45] of the reactions of $Ru_3(CO)_{12}$ with QR_3 (Q = P or As) in decalin. From the activation parameters and dependence of the rate constants on the nature of the phosphine and arsine ligands, it was suggested that there was an exceptionally high degree of bond-making in the transition state. The first stage of the reaction involved reversible dissociation of CO, and it was observed that CO competed slightly more successfully for [$Ru_3(CO)_{11}$] than did $P(OPh)_3$. $Ru_3(CO)_{12}$, when treated with either PhNO₂ or PhNH₂, af-

forded [46] Ru₃(CO)₁₀(NPh) (49), Ru₃(CO)₉(NPh)₂ (50), Ru₃(CO)₁₀H(NHPh) (51 or 52), and $Ru_3(CO)_9H_2(NPh)$. With PhNCO, $Ru_3(CO)_{12}$ gave 49 and traces of 50, but with PhNC, rubber-like metal carbonyl species were obtained. Treatment of 49 with an excess of PhNO₂ in boiling benzene gave 50 and hydrogenation (20 atm, 85°, benzene) afforded $Ru_3(CO)_9H_2(NPh)$ and $Ru_4(CO)_12H_4$. The structure of 49 is analogous to that of $Fe_1(CO)_{10}(NSiMe_1)$ [47] and 50 has homologues containing iron [48]. Of the two alternative structures for $Ru_3(CO)_{10}$ -H(NHPh) (51 or 52), the former is analogous to $M_3(CO)_{10}H(SR)$ [49]. It appeared that $Ru_3(CO)_9H_2(NPh)$ could not be obtained directly from $Ru_3(CO)_{12}$ (perhaps it was produced via 49), and may have a structure analogous to Ru₃- $(CO)_9H_2Q$ (Q = S, Se or CCH₂ groups) [50]. With triarylphosphites under mild conditions, $\operatorname{Ru}_3(CO)_{12}$ afforded [51] $\operatorname{Ru}_3(CO)_{12-n}[P(OR)_3]_n$ (R = Ph, n = 2 or 3; R = p-tolyl, n = 3), but in refluxing decalin, o-metallation of the aryl

(53)

Fig. 2.

rings occurred. Thus Ru(CO)₂[P(OC₆H₃R)(OC₆H₄R)₂]₂ (R = H, two isomers; R = Me, one isomer), and Ru₂(CO)₃H[P(OC₆H₃R)(OC₆H₄R)₂][OP(OC₆H₄R)₂] (R = H or Me) (53), together with Ru₄(CO)₉[P(OPh)₃]₃H₄ (54, L = P(OPh₃) were produced. The first is probably an octahedral derivative of Ru¹¹ with *cus*-CO groups. The structure of 53 has been established crystallographically and a possible mode of formation is outlined in Fig. 2. The mechanism of reaction may involve initial transfer of a P(OPh)₃ group from one metal to another in the symmetrical Ru₃(CO)₄[P(OPh)₃]₃; such a reaction is known [52] and could give rise to Ru(CO)₂[P(OC₆H₃R)(OC₆H₄R)₂]₂ and 53, suggesting that *o*-metallation of P(OPh)₃ is concomitant with, or closely related to, the formation of the diarylphosphonate ligand.

Os₃(CO)₁₂ reacted in refluxing xylene with PPh₃ to give [53] Os₃(CO)₉-(PPh₃)₃, but when heated in the absence of solvent (in a 1/2 molar ratio), Os₃(CO)_{12 n}(PPh₃)_n (n = 1.2 or 3) and seven other remarkable products, identified crystallographically [54], were produced. These were Os₃(CO)₈(PPh₂)-(Ph)(PPhC₆H₄) (55), Os₃(CO)₈(PPh₂)₂(C₆H₄) (56), Os₃(CO)₈"(PPh₃)(PPh₂)", which was somewhat similar to 55 and 56 except that o-hydrogen atoms in some of the phenyl rings may have been eliminated, Os₃(CO)₈(PPh₃)H(PPh₂-C₆H₄) (57), Os₃(CO)₉(PPh₃)H(PPh₂C₆H₄) (58), Os₃(CO)₇(PPh₃)H(PPh₂)(C₆H₄) (59), and Os₃(CO)₇H(PPh₂)(PPh₂C₆H₄C₆H₃) (60). The presence of hydride ligands was established by 'H NMR spectroscopy, but although tentatively

....

(58)

(59)

(60)

placed as shown in 57, 58 and 59, their exact location is not known with certainty. By heating $Os_3(CO)_{12}$ with $P(p-MeC_9H_4)_3$, $Os_3(CO)_{12,n}(PR_3)_n$ (n = 1 or)2) and $O_{3}(CO)_{8}[P(C_{6}H_{4}Me)_{2}]$ ($C_{6}H_{4}Me)[P(C_{6}H_{4}Me)(C_{6}H_{3}Me)]$ were prepared, and under similar conditions with $AsPh_3$, $Os_3(CO)_7(AsPh)_2(C_6H_4)$ and Os₃(CO)₁₀(AsPh₃)₂ were produced. Protonation of Os₃(CO)₉(PPh₃)₃ with HBr in refluxing chloroform afforded $[Os_3(CO)_9(PPh_3)_3H]$ Br. When the trialkylphosphine complexes $O_{3}(CO)_{12-n}(PR_3)_n$ (R = Me or Et, n = 1or 2) were heated in refluxing n-nonane, the species $Os_3(CO)_9 H_2(R_2)$ -PCX) and $O_{s_1}(CO)_8(PR_3)H_2(R_2PCX)$ (X = H or Me) (63) were formed [55]. The R₂PCX group bridges the three osmium atoms and in the first species there is rapid site exchange between the R and H groups. Of the two possible structures proposed for $Os_3(CO)_4H_2(R_PCX)$ (viz. 61 and 62), the former is favored, and in the latter species, 63, it seems that the PMe₃ group occupies position A, B or C. The products of the reaction between $O_{S_1}(CO)_{12}$ and $o \cdot C_6H_4XY$ (X = Y = H; X = Y = AsMe₂; X = H, Y = PMe₂ or AsMe₂), may be generalised [56] as the "benzyne"-containing species Os₃- $(CO)_n XY(C_6H_4) (X = Y = H, n = 9; X = Y = AsMe_2, n = 7; X = H, Y = PMe_2$

(61)

(62)

or AsMe₂, n = 9). The following observations could also be made: (i) cleavage of both C-H bonds ortho to a C-P or C-As bond, and of the C-P or C-As bond occurred, and no species was obtained as a result of C-H cleavage alone (cf. reactions of $Os_3(CO)_{12}$ with PPh₃): it may be noted also that both Os_3 - $(CO)_{9}XY(C_{6}H_{4}), X = H, Y = PMe_{2}$ or AsMe₂, and Os₃ $(CO)_{8}(PMe_{2}Ph)H(PMe_{2})$ - $(C_{0}H_{4})$ are different to 59, but that $Os_{3}(CO)_{7}XY(C_{0}H_{4})$, X = Y = AsMe₂, is similar to Os₃ (CO)₇(PPh₂)₂(C₆H₄) [53]; (ii) in the thermolysis of Os₃(CO)₁₁- (PMe_2Ph) and $Os_3(CO)_{10}(PMe_2Ph)_2$, all of the original P atoms were retained, and only on prolonged heating did $Os_3(CO)_{12}(PMe_2Ph)$ give $Os_3(CO)_7(PMe_2)_2$ - (C_6H_4) ; the corresponding arsine compounds gave significant yields of products with one less arsenic atom per cluster than the starting material; (iii) there was no evidence for the production of dimeric species on the pyrolysis of PMe₂Ph-containing clusters, but complexes containing AsMe₂Ph afforded $Os_2(CO)_6(AsMe_2)_2(C_6H_4)$ and $Os_2(CO)_6H(AsMe_2)(C_6H_4)$ (generalised as Os_2 - $(CO)_{6}XY(C_{6}H_{4})$ (64). When Os₃(CO)₇(PMe₂)₂(C₆H₄) was refluxed under CO in n-nonane, $Os_2(CO)_6(PMe_2)(PMe_2C_6H_4)$ (65) was formed. The species Os_3 -

 $(CO)_7XY(C_bH_4)$ (X = Y = PMe₂ or AsMe₂) were fluxional (Fig. 3). Exchange of the X and Y environments could occur, without C_a/C_b ("benzyne" ring) exchange, via pathway 1, whereas simultaneous X/Y and C_a/C_b exchange could occur via pathway 2; the two processes actually took place and the combination of both led to an effective rotation of the "benzyne" ring about the trimetallic cluster [53].

In a structural study of $Ru_3(CO)_9H_3(CMe)$ by nematic-phase NMR spectroscopy it was assumed [57] that the Ru-H-Ru bridges were symmetrical. The Ru-H bond length and Ru-H-Ru bridge angles were calculated to be 1.90 Å and 101° respectively. Reaction of $Os_3(CO)_{12}$ with ethylene afforded [58] $Os_3(CO)_9H_2(CCH_2)$, in which both methylene protons and hydride liPathway 1

Pathway 2

Fig. 3.

gands underwent site exchange. Two possible structures, relating to the location of the H ligands, are possible, viz. 66 and 67; the Os(1)-Os(2), Os(1)-Os(3) and Os(2)-Os(3) bond lengths are 2.89, 2.80 and 2.92 Å, respectively, while

the Os(1)—C(1), Os(2)—C(1) and Os(3)—C(2) distances are 2.05, 2.04 and 2.29 Å, respectively; the C(1)—C(2) distance is 1.33 Å and the bond angles defined by Os(3)—C(2)—C(1) and Os(2)—C(1)—C(2) are 138 and 124°, respectively. The H_c/H_d exchange ($E_a = 20.4$ kcal/mole) was faster than hydride ligand exchange and it was proposed that, starting with 66, one hydrogen atom could move to an unprotonated metal—metal bond, causing H_e/H_d exchange, without simultaneous hydride ligand exchange. In refluxing heptane, Os₃(CO)₉H₂(CCH₂) reacted with hydrogen giving Os₃(CO)₉H₃(CMe), analogous to its ruthenium counterpart [59]; deuteration afforded Os₃(CO)₉C₂H₂D₄ in which D₂ may have been initially incorporated into the methylene group, intermolecular exchange perhaps leading to H/D exchange of the hydridic ligands. Reaction of 1,5- or 1,3-cyclooctadiene with α -Ru₄(CO)₁₂H₄, or of the 1,5diene with α -Ru₄(CO)₁₃H₂, gave [60] Ru₃(CO)₉H₂(C₈H₁₂) (68), Ru₃(CO)₉H-(C₈H₁₁) (69 or 70), Ru₄(CO)₁₁(C₈H₁₀), Ru₄(CO)₁₂(C₈H₁₀), Ru₄(CO)₁₂(C₈H₁₂)

(72)

and Ru(CO)₃(C₈H₁₂) (from Ru₄(CO)₁₂H₄). With cyclooctene, α -Ru₄(CO)₁₂H₄ gave 68, Ru₃(CO)₁₂ and α -Ru₄(CO)₁₃H₂, while Ru₃(CO)₁₂ reacted with 1,3cyclooctadiene affording Ru₃(CO)₉H₂(C₈H₁₀) (72), as well as 68-71, Ru(CO)₃-(C₈H₁₂) and the other above-mentioned Ru₄ species. Reaction of M₃(CO)₁₂ (M = Ru or Os) with cyclooctene gave M₃(CO)₉H₂(C₈H₁₂), viz. 68. It is highly probable that 68 is similar to Ru₃(CO)₉H₂(C₈H₈) [61] and is fluxional, under-

going a flipping process, associated with the C_8H_{12} ring, which is independent of the metal (Fig. 4). A second intramolecular process appears to cause rotation of the C_8H_{12} group about the M₃ triangle. The complex Ru₃(CO)₉H(C_8H_{11}) may have the structure 69 or 70, and is similar to Ru₃(CO)₉H($C_{12}H_{13}$) and Ru₃(CO)₉H-($C_{12}H_{17}$) [62]; it reacted with hydrogen at 80-90°C in hexane giving 68. The structure of 71 has been established crystallographically [63] and while the precise geometries of Ru₄(CO)₁₂(C_8H_{10}) and Ru₄(CO)₁₂(C_8H_{12}) are not known, they are likely to be similar to that of 71, the double bond in the former being uncoordinated. 71 and Ru₄(CO)₁₂(C_8H_{12}) reacted with hydrogen at 80-90° in toluene giving 68 and α -Ru₄(CO)₁₂H₄, whereas, under identical conditions in hexane, Ru₄(CO)₁₂(C_8H_{10}) afforded only the latter hydride. The results of this work were explained in terms of an oxidative addition of the appropriate olefin across the Ru₃ cluster.

From the structural parameters obtained [64] from 73, it appears that the acetylenic fragment is bonded to the Ru₁ triangle in a way similar to that in Fe₁(CO)₆(C₂Ph), [65]. Thus there is a three-centre μ -type bond between Ru(2) and Ru(3) and the (acetylenic) C(10)-C(11) group, and a σ -bond between Ru(1) and C(10). The trimetallic system forms an equilateral triangle (Ru-Ru 2.78-2.79 Å) and the C(10)-C(11) distance is 1.29 Å. The main differences between the Fe and Ru structures are shortenings of the C(10)-M(1) and C(10)-C(11) bonds. Reaction of the osmacyclopentadienyl complex Os₃(CO)₇(ac)₂ (74), (ac = Ph₂C₂, (p-ClC₆H₄)₂C₂ or (p-MeC₆H₄)₂C₂) with a further mole of acetylene gave [66] $Os_1(CO)_7(ac)_3$ which, with further ac after 10 h, gave $Os_3(CO)_{\circ}(ac)_3$ and a benzene derivative based on cyclisation of the acetylene groups (e.g. $Os_3(CO)_7(C_2Ph_2)_3$ afforded $Os_3(CO)_8(C_2Ph_2)_3$ and C_6Ph_6). After 48 h, the products were $Os_2(CO)_6(ac)_2$, $Os(CO)_3(ac)_2$ and the appropriate benzene. The structure of $Os_3(CO)_7(Ph_2C_2)(Ph_4C_4)$ (75), (derived [66] from 74 (ac = Ph_2C_2) and C_2Ph_2) has been established crystallographically [67]. The three metal atoms form a nearly equilateral triangle $(O_{s}(1)-O_{s}(2) 2.68, O_{s}(1)-O_{s}(3) 2.74 \text{ and } O_{s}(2)-O_{s}(3) 2.81 \text{ Å})$, chelation occurring between the Ph₄C₄ group and the cluster via two σ -bonds to one metal atom (Os(1)) and an interaction between the π -electrons of the osmacyclopentadiene fragment and the adjacent Os(2)(CO), group. The additional acetylenic fragment appears to function as a four-electron donor to the whole cluster. There is no apparent interaction between the phenyl group (as illustrated) and the Os(3) atom, unlike the situation in 74 (ac = C_2Ph_2) [68]. The C-C bond of the unique acetylenic group is roughly parallel to the Os(1)- $O_{s}(2)$ bond and its mid-point is nearly above the "centre of gravity" of the O_{s_1} cluster.

(74)

(75)

Reaction of trans-PtCl₂(py)₂ with Na₂Fe(CO)₄ afforded [69], after refluxing in methanol/THF, trans-Fe(CO),[PtCl(py)], in which there are two Pt-Fe bonds somewhat ionic in character (Pt^{δ^+} -Fe^{δ^-}). Treatment of Fe₃(CO)₁₂ with SiHCl[Mn(CO)₅][Co(CO)₄] gave [70] $Fe(CO)_4$ [SiCl{Mn(CO)₅}]₂[Co₂(CO)₇] (76).

The products of reaction of $M_3(CO)_{12}$ (M = Ru or Os) with water were [71], respectively, α -Ru₄(CO)₁₂H₄ and α -Ru₄(CO)₁₃H₂, and Os₃(CO)₁₀H(OH), Os₄- $(CO)_{13}H_2$, $Os_4(CO)_{12}H_4$, $Os_5(CO)_{16}H_2$, $Os_5(CO)_{13}H_2$, $Os_6(CO)_{18}H_2$ and $Os_7(CO)_{19}$ -H₂C. From the simplicity of the IR spectra of these species it seemed that molecular symmetries were high. There were no CO groups bridging two metal atoms, but the presence of carbonyl groups bridging three metal atoms could not be excluded. Treatment of α -Ru₄(CO)₁₂H₄ with ethylene (10-12 atm, 130°) gave [72] eight products, including Ru₅(CO)₁₅C and Ru₆(CO)₁₇C. The structure of the former, on the basis of IR spectra, is analogous to that of $Os_{s}(CO)_{1s}C$ (prepared by pyrolysis of $Os_3(CO)_{12}$ or $Os_6(CO)_{18}$ [73] in vacuo at 255°) and $Fe_5(CO)_{15}C$ [74]. It seemed quite likely that the ethylene played no part in the formation

References p. 372

of $M_{s}(CO)_{1s}C$, and when M = Os the precursor of the appropriate carbide is probably $Os_{6}(CO)_{18}$. The structure of the hexanuclear species, 77, is derived [75] from a bicapped tetrahedron. The intermetallic distances Os(1)-Os(2) and Os(3)-Os(4) are short (2.73 and 2.76 Å), while Os(1)-Os(3), Os(1)-Os(4) and the comparable bond lengths involving Os(2) and all those connecting Os(5) and Os(6) to the cluster, are in the range 2.78-2.84 Å. The short metal-metal contacts were consistent with distances connecting Os^{1} atoms. It was suggested that $Os_{7}(CO)_{21}$ and $Os_{8}(CO)_{23}$ might have capped octahedral structures.

Metal-metal bonded species involving Group IV atoms

It has been established [76] that a five-coordinate intermediate is involved in the CO-exchange reactions [77] of cis-Ru(CO)₄(SiCl₃)₂ (Scheme 6). By UV

irradiation of a mixture of $Fe(CO)_5$ and SiI_4 , $Fe_2(CO)_6(SiI_4)$ (78), was formed [78]. Reaction of $Fe(CO)_5$ with an excess of Si_2Cl_6 , however, afforded [Fe-(CO)_4SiCl_2]_2, perhaps via $Fe(CO)_4(SiCl_3)_2$ as an intermediate [79]. From kinetic studies of the reaction of $[Ru(CO)_4(SiMe_3)]_2$ with PPh₃, which gave Ru-(CO)_3(PPh_3)_2 and Ru(CO)_2(PPh_3)_2(SiMe_3)_2, it was shown [80] that the initial reaction rate changed steadily from first order towards an order of ½ (in terms of the starting complex) as the concentration of the precursor was increased. Reaction of the silyl complex with CCl_3Br afforded initially Ru(CO)_4Br(SiMe_3), and the results suggested prior homolytic fission of $[Ru(CO)_4(SiMe_3)]_2$. However, the reaction overall was considerably more complex.

The species formulated [81] as $[Fe(CO)_4(SiMe_3)_2]_2$, obtained from the reaction of Na₂[Fe(CO)₄] with SiIMe₃, contained anomalous mass spectral features. Thus, the ions $[Fe_2(CO)_9(SiMe_3)_4]^*$ and $[Fe_2(CO)_{10}(SiMe_3)_4]^*$, were detected [81]. The species has been resynthesised (using SiBrMe₃) and has been identified [82] as a ferracyclopentadienyl derivative, 79.

The binuclear species $[Fe(CO)_4MR_2]_2$ (M = Ge, Sn, Pb; R = Me, Bu, Ph) reacted [83] with relatively weak Lewis bases (L) giving $Fe(CO)_4MR_2L$ (L = pyridine, acetone, THF or ether). Mössbauer (^{119m}Sn) and X-ray photo-electron spectral studies of $Fe(CO)_4Sn-t-Bu_2(L)$ (L = pyridine or DMSO) established [84] that the species contained Sn^{IV} . Addition of SnX_4 (X = Cl or Br) to Fe(CO)₄(QPh₃) (Q = P, As or Sb) afforded [85] Fe(CO)₃(QPh₃)X(SnX₃).

Complexes containing cyclic N-donor atom ligands

Iron(II) complexes derived the tetracyclic tetradentate ligand TIM (80), [Fe(NCMe)₂(TIM)][PF₆]₂ reacted [86] reversibly, in acetonitrile, with CO giving [Fe(NCMe)(CO)(TIM)][PF₆]₂. The Mössbauer spectral parameters obtained from this species were consistent with a low-spin Fe^{II} formulation. The

dianionic ligand Q (81) reacted [87] with iron(II) amine complexes under CO in the presence of appropriate bases L giving diamagnetic Fe(CO)L(Q) (L = MeCN, pyridine, 4-MeC₃H₄N or N₂H₄). The structure of the hydrazine adduct is represented in Fig. 5. The iron atom is displaced 0.11 Å towards the CO group out of the plane of the four N atoms of Q, and the Fe-N(N₂H₄) bond is unusually long (2.12 Å). In DMF at 100°, Fe(OAc)₂ reacted [88] with the appropriate ligand giving 82. The benzo substituents provided an open-sided cavity of depth 5 Å (Fig. 6) and the species reacted with CO to give a 1/1 adduct

(82)

The complexes 83 and 84 had an affinity for CO which was apparently influenced [89] by the nature of the group R (whether it could interfere by coordinating in the sixth position at Fe when the X position is initially vacant). The

two complexes had similar affinities for CO but differred substantially in their affinities for O_2 ; 84 preferred O_2 to CO, but 83 in pyridine (X = py) would not bind oxygen. The formation of Fe(CO)(pip)(porph) (pip = piperidine, porph = protoporphyrin-IX or tetraphenylporphyrin) from Fe(pip)₂(porph) has been studied [90] kinetically. The mechanism involved predissociation, giving the five-coordinate Fe(pip)(porph), and the data indicated that the models resembled quite closely the kinetic properties of the active iron site in deoxy-myoblobin and -hemoglobin; iron glyoxime complexes were shown to be poor models for heme protein systems. Nitric oxide reacted [91] with Fe(pip)2(porph) giving paramagnetic Fe(NO)(pip)(porph), and it was suggested that the Fe-N-O bond system was bent. The ligand exchange reaction Fe(CO)(pip)(porph) + NO = Fe(NO)(pip)(porph) + CO (porph = protoporphyrin-IX) has been compared with the analogous one involving the hemoglobin complexes. Both reactions involved six-coordinate diamagnetic carbonyl and paramagnetic nitrosyl species, but in the porphyrin complex, the sixth ligand was piperidine while in the hemoglobin species it was imidazole. Preliminary studies indicated that the enthalpy of formation of the nitrosyl from the carbonyl was comparable in the two cases, so that the differences between equilibrium constants for the two systems lay in entropies of solvation which were clearly different for the porphyrin model in piperidine solution and for hemoglobin in aqueous media. The

F1g. 7.

preliminary studies also indicated that in the competition reactions of $Fe(pip)_{2}$ -(porph) for NO and CO, more of the nitrosyl complex was formed initially than was expected from the separate equilibrium constants. On standing, however, the relative amounts of NO and CO adducts reached their equilibrium concentrations. The kinetic measurements again indicated the involvement of five-coordinate intermediates and were in general agreement with the reported kinetics of addition of NO and CO to hemoglobin [92]. When Fe(TPP) (TPP = *meso*-tetraphenylporphyrin) was treated with resin-bound imidazole, a metalloporphyrin-containing resin was produced [93]. Carbonylation of this species afforded a monocarbonyl species still attached to the resin (Fig. 7). Oxidation resulted in the degradation of the complex, with removal of [Fe(TPP)]₂O. ¹³C NMR spectral studies of ¹³CO incorporated in rabbit hemoglobin revealed [94] that there were three distinct Fe^{II}-¹³CO coordination sites.

The product obtained by reaction of $Ru_3(CO)_{12}$ with tetraphenylporphine (TPP) followed by recrystallisation from CHCl₃/EtOH has been described either as Ru(CO)(TPP) [95] or Ru(CO)₂(TPP) [96] (a similar species was reported containing tetra-p-isopropylphenylporphine). This reaction has been reexamined [97], and on the basis of chemical, spectral and X-ray crystallographic analysis, the species has been reformulated as Ru(CO)(EtOH)(TPP). The crystallographic study revealed a disorder of the CO and EtOH groups, which may have led to earlier incorrect reports of a bent Ru-C-O bond arrangement; otherwise the structure was as expected, containing a planar arrangement of N atoms, with a Ru-C(O) bond length and R-C-O bond angle of 1.77 Å and 175.8(1.9)° respectively. The structural data obtained [98] from Ru(CO)(py)(TPP) agreed well with those described above for Ru(CO)(EtOH)(TPP). The metal atom is displaced 0.079 Å out of the plane of the four N atoms towards the CO group, the Ru-C(O) and Ru-C-O dimensions being 1.84 Å and 178.4° respectively. The long axial Ru–N distance was attributed to the *trans*-influence of the CO ligand. The porphyrin complexes Ru(CO)(TPP), Ru(CO)(py)(TPP), Ru(CO)-(OEP) (OEP = octaethylporphyrin) and Ru(CO)(etioI) (etioI = etioporphyrin-I) underwent [99], voltammetrically, two one-electron oxidations in dichloromethane. The first oxidation process occurred at the ring, giving π -cation radical species.

Halide, hydride and other complexes of M^{11}

The mechanism of formation of cis-Fe(CO)₄I₂ from Fe(CO)₅ and I₂ in-

SCHEME 7

volved [100] (Scheme 7) the successive formation of 1/1 and 1/2 molecular adducts. Mössbauer spectral parameters have been obtained [101] from *cis*-Fe(CO)₄X₂ (X = Cl, Br and I); those for Fe(CO)₄I₂ differed to those previously reported [102]. It was also noted that there was no Mössbauer spectral evidence for the formation of *trans*-Fe(CO)₄I₂ on photolysis of the *cis*-isomer.

Carbonylation (by CO gas) of $\operatorname{RuCl}_3 \cdot nH_2O$ dissolved in ethanol is known [103] to give a bright red solution. It has been shown [104] that this solution contains [Ru(CO)₂Cl₂]_n (as evidenced by isolation of salts of [Ru(CO)₂Cl₄]²⁻ upon addition of Cl⁻), fac-[Ru(CO)₃Cl₃]⁻ and Ru(CO)Cl₃ (addition of Cl⁻ gave [Ru(CO)Cl₃]²⁻).

Mössbauer spectral data have been obtained [105] for a series of Lewis base complexes of iron(II) carbonyl halides, viz. $Fe(CO)_3LX_2$ (X = I, L = $CN(p-MeOC_6H_4)$, PPh_2Et , PPh_3 , $P(OPh)_3$ or $P(OMe)_3$; X = Br, L = $P(OPh)_3$), $Fe(CO)_2L_2X_2$ (X = Cl, L = PPh_2Me , PPh_2Et , PPh_3 or $P(OPh)_3$; X = Br, L = PPh_2Me , PPh_2Et , PPh_3 , $P(OPh)_3$, $P(OMe)_3$ or $L_2 = Ph_2PCH_2CH_2PPh_2$; X = I, L = $CN(p-MeOC_6H_4)$, PPh_2Me , PPh_2Et , PPh_3 , $P(OPh)_3$, $P(OMe)_3$, PMe_3 (*cis*and *trans*-complexes) and $L_2 = Ph_2PCH_2CH_2PPh_2$). From partial quadrupole and centre shifts, the σ -donor and π -acceptor properties of L were estimated. It was observed that $P(OMe)_3$ was the strongest σ -donor and π -acceptor, being similar in its bonding properties to $CN(p-MeOC_6H_4)$. From the general correlation between the partial quadrupole and centre shift data, it was suggested that in these complexes σ -bonding of L was dominant in determining the chemical and quadrupole shifts.

Reduction of $RuCl_3 nH_2O$ by hydrogen, using Adams catalyst in the presence of RCN (R = Me, Et, n-Pr, i-Pr, Ph or CH-Ph) gave [106] Ru(NCR). Cl₂. Treatment of this species with Ph₂PCH₃CH₃PPh₃ (diphos) afforded Ru-(diphos)(NCR)₂Cl₂ which reacted with CO giving Ru(CO)(diphos)(NCR)Cl₂. Carbonylation of $Ru(NCR)_{1}Cl_{1}$ in boiling methanol gave $Ru(CO)(NCR)_{1}Cl_{1}$ and, in boiling acetone, $Ru(CO)_2(NCR)_2Cl_2$ (cis-CO groups). A series of carbonyl triphenylphosphine complexes of RuCl₂ has been synthesised [107] in dimethylacetamide (DMA), DMF or DMSO (Scheme 8). A number of solvent-containing species were isolated in which the solvent molecules were Obonded. Reaction of $Ru(PPh_3)_3HBr$ with CO in DMA gave $Ru(CO)_2(PPh_3)_2$. HBr (85 or 86). Reduction by hydrogen at 80° of $RuCl_3 \cdot nH_2O$ dissolved in DMF gave brown ruthenium(I) species which, on treatment with acetic acid/ sodium acetate mixtures, afforded $[Ru(CO)_2(PPh_3)(OAc)]_2$. Under mild conditions the carbonyl species illustrated in Scheme 8 showed low activity as catalysts for the homogeneous hydrogenation of olefins, and were ineffective as hydroformylation catalysts; $Ru(CO)_2(PPh_3)_3Cl_2$ was an efficient olefin isomerisation catalyst.

SCHEME 8

(rex = recrystallisation)

Reaction of Ru(MeOH)(QPh₃)₂Cl₃ with CO gave [108] trans-Ru(CO)₂-(QPh₃)₂Cl₂ (Q = P or As), and these species isomerised in hot benzene (Scheme 9). By refluxing Ru(MeOH)(QPh₃)₂Cl₃ in CS₂, Ru(CS₂)(QPh₃)₂Cl₃ (87) was

produced whereas with Ru(MeOH)(QPh₃)₂Br₃, mixtures of the bromo-analogue of 87 and Ru(CS)(QPh₃)₂Br₃ were formed. The ruthenium(III) complexes also reacted with norbornadiene in refluxing benzene giving Ru(C₇H₈)-(QPh₃)₂X₂ (88); and Ru(C₇H₈)(PMe₂Ph)₂Cl₂ could be prepared by treating

[Ru(CO)(C_2H_8)Cl₃]⁻ with PMe₂Ph. However the reaction between Ru(MeOH)-(AsPh₃)₂Cl₃ and 1,5-cyclooctadiene afforded only [Ru(C_8H_{12})Cl₂]_n, and with ethylene or PhC=CPh, Ru(AsPh₃)₂Cl₃ alone was isolated. Passage of CO through ethanol solutions containing RuCl₃ · nH_2O and AsR₃ (R = o-, m- or p-MeC₆H₄) gave [109] cis-Ru(CO)₂(AsR₃)₂Cl₂ and treatment of this with LiBr afforded the corresponding bromides. After boiling a mixture of RuCl₃ and P(t-Bu)R₂(L)

(R = Me, Et, n-Pr, n-Bu, Ph or p-MeC₆H₄) in 2-methoxyethanol under CO for 2½ h; a mixture of the *cis*- and *trans*-isomers 89 and 90, was formed [110]. However, after 16 h, only 89 was obtained. There was a linear relationship, obtained from ³¹P NMR spectral studies, between δ (P) for free P(t-Bu)R₂ and $\Delta\delta$ for the coordinated phosphines in XC but not in 89, possibly because of conformational effects in the latter. There was also a linear relationship between δ (C) (¹³CO) and carbonyl stretching free constants obtained from these complexes. Treatment of *cis*-Ru(CO)₂[P(n-Bu)₂(t-Bu)]₂Cl with KOH in 2-methoxyethanol gave Ru(CO)₂[P(n-Bu)₂(t-Bu)]₂HCl (91) (L = P(n-Pr)₂(t-Bu)), which afforded with PhN₂⁺, the diimine complex 92. By reaction of the bulky phosphines P(t-Bu)₂R (R = Ph or *p*-MeC₆H₄) with RuCl₃ · *n*H₂O in 2-methoxyethanol, the dimeric species [Ru(CO)₂{P(t-Bu)₂R} Cl]₂ (93), whose structures has

(87)

elucidated crystallographically [111], was prepared. The Ru—Ru distance in these complexes, 2.63 Å, is quite short. When $[Ru(CO)_2(P(t-Bu)_2Ph)Cl]_2$ and $[Ru(CO)_2{P(t-Bu)_2(p-MeC_6H_4)}Cl]_2$ were refluxed together in toluene, the mixed species $[{P(t-Bu)_2Ph}(CO)_2Ru(\mu-Cl)_2Ru(CO)_2{P(t-Bu)_2(p-MeC_6H_4)}]$ was formed and the P—P coupling (ca. 80 Hz) observed in the NMR spectrum of the complex was apparently transmitted through the metal—metal bond. Chloride ion could be metathetically displaced from 93 by Br⁻ or I⁻, but with OAc⁻,

species 94 was produced. In the acetate J(PP) was greater than that in the chloride, possibly due to a release of steric strain occasioned by replacement of Cl by OAc thereby leading to greater linearity of the P-Ru-Ru-P bond system. Similar acetates could be obtained alternatively [112] from Ru₃.

(CO)₁₂, PR₃ and acetic acid. The compounds did not react with NO but, on chlorination, afforded Ru₂(CO)₄L₂Cl₄ (L = P(t-Bu)₂Ph or P(t-Bu)₂(*p*-MeC₆H₄)) (95 or 96). When Ru₂(CO)₄ (P(t-Bu)₂Ph)₂Cl₄ was treated with P(t-Bu)₂Ph in 2-methoxyethanol, 93 (R = Ph) was regenerated, and with pyridine or PMe₂Ph the monomeric 97 (Q = py or PMe₂Ph). Ru₃(CO)₁₂ or Ru(CO)₃(PPh₃)₂ treated with 1,1,1-tris(diphenylphosphinomethyl)ethane (TDP), giving [113] Ru(CO)₂-(TDP) (98). This compound did not react with CO but with halogens formed [Ru(CO)₂(TDP)X]⁺X⁻ (X = Cl or Br) which, on thermolysis, rearranged to Ru(CO)(TDP)X₂. Reaction of Ru(CO)₂(PPh₃)₂Cl₂ with TDP, or of Ru(CO)₂-(TDP) with O₂ and treatment of the resulting Ru(CO)(TDP)(O₂CO) with HCl, gave Ru(CO)(TDP)Cl₂. Some reactions of this last compound are summarised in Scheme 10.

When $Ru(CO)_4(PPh_3)$ was pressurised with hydrogen in an IR high-pressure cell, $Ru(CO)_3(PPh_3)H_2$ could be identified, and the equilibrium CO + $Ru(CO)_3(PPh_3)H_2 \Rightarrow Ru(CO)_4(PPh_3) + H_2$ was confirmed using deuterium isotopic labelling [114]. At low temperatures, $Ru(CO)_5$ reacted with H_2 giving $Ru(CO)_4H_2$ which, at 20°, decomposed into polynuclear products. The temperature dependencies of the ¹H and ³¹P NMR spectra of $M(CO)L_3H_2$ (M = Fe

or Ru; L = phosphite, phosphine, phosphinite or phosphonite) have been reported [115]. These complexes underwent $cis \neq trans$ rearrangements via an intramolecular "tetrahedral jump" mechanism. When M = Fe and L = PPh₂Me

or PPh_2Et , which exist upon formation as the *cis*-isomer, 99, the barrier to interconversion to the *trans* form is ca. 12.5 kcal/mol.

Treatment of $Ru(PPh_3)_4H_2$ with $[Ph_3C][PF_6]$ afforded [116] the coordinatively unsaturated $[Ru(PPh_3)_4H][PF_6]$. This hydride reacted with HCHO, and with *p*-MeC_6H_4SO_2N(NO)Me, giving $Ru(CO)(PPh_3)_3H_2$ and $Ru(NO)_2(PPh_3)_2$, respectively. With norbornadiene or cyclooctadiene, $[Ru(diene)(PPh_3)_3H]^*$ was formed. Dissolution of the red $[Ru(PPh_3)_4H]^*$ gave, after a few hours, a green solution from which a light yellow species, $[Ru(PPh_3)_3H]^*$ (100) was isolated. The same species was also prepared from $[Ru(PPh_3)_4H]^*$ by heating in polar or non-polar solvents. Reduction of 100 with NaBH₄ afforded $Ru(PPh_3)_3H_4$.

Reaction of Ru(PPh₃)₄H₂, Ru(N₂)(PPh₃)₃H₂ or Ru(PPh₃)₃H₄ with CO₂ gave [117] Ru(PPh₃)₃H(O₂CH) (101), which may exist in an equilibrium with Ru(PPh₃)₃(CO₂)H₂. Treatment of the formate with CO gave Ru(CO)(PPh₃)₃H₂ and CO₂, and with CS₂, Ru(PPh₃)₂(S₂CH)₂ and CO₂ were formed. Reaction of 101 with HX or RX (X = Cl, Br or I; R = allyl) afforded only Ru(PPh₃)₃HX. Treatment of Ru(CO)(PPh₃)₂HCl with carboxylic acids (RCO₂H) gave [118]

Ru(CO)(PPh₃)₂(OCOR) (101, 102 or 103). Carboxylic acids with pK_a values greater than ca. 4.2 reacted with Ru(CO)(PPh₃)₃H₂ in boiling 2-methoxyethanol giving Ru(CO)(PPh₃)₂(O₂CR)H (104), whereas acids having $pK_a < 4.2$ gave Ru(CO)(PPh₃)₂(OCOR)(O₂CR) (105) or, less likely, 106; 107 was obtained by reaction of RCO₂H with Ru(CO)₃(PPh₃)₂. The phenylarsonato complexes, Ru-(CO)₂L₂(O₃AsPh) (L = triarylphosphine or arsine) and Ru(CO)₂(LL)(O_{2.5}AsPh)₂ (LL = Ph₂MCH₂CH₂MPh₂, M = P or As) have been reported [119]; the ligand O₃AsPh is bidentate in these species.

Reaction of $Os(CO)[P(C_6H_{11})_3]_2HCl$ with SO_2 in benzene gave [120] Os-(CO)[$P(C_6H_{11})_3$]_2(SO_2)HCl (108 or 109), as a benzene solvate. With CS_2 , the hydrido chloride gave 110 or $Os(CO)[P(C_6H_{11})_3]_2(CS_2)$ HCl (111). Carbonylation of OsL_3H_4 (L = tertiary phosphine or arsine) with CO produced [121]

References p. 372

 $O_{s}(CO)L_{3}H_{2}$ (**112**, L = PR₃), also obtainable by similar treatment of cis-OsL₂H₄ in boiling toluene, or by refluxing OsL_3H_4 in 2 methoxyethanol. With Os- $(PPh_3)_{3}H_{4}$, a mixture of Os(CO)(PPh_3)_{3}H_{2} and Os(CO)₂(PPh_3)₂H₂ was produced. When treated with four equivalents of 1,5-cyclooctadiene at 100° in ethanol, $Os(PPh_2Et)_3H_4$ gave cyclooctene (50%), unreacted cyclooctadiene and $Os(C_8 H_{12}$)(PPh₃)₃(EtOH). With twelve equivalents of the diene various octenes, two equivalents of octane, and the olefin complex, were formed. With $PhC \equiv CPh$, 40% reduction to 1,2-diphenylethylene was achieved and an unidentified acetylene-free olefin complex was produced. Isomerisation and hydrogenation of 1-octene was accomplished using cis-Os(PPh₂Et)₄H₂, and the amount of octane formed indicated the transfer of more than two H atoms per Os complex to the octene. This suggested that hydrogen is made available from the phenyl group of the coordinated phosphine. Os(CO)(PPh-Et), H, isomerised octenes in boiling toluene without forming octane, and the isomerisation of the 1-ene was faster than the 2-ene. Treatment of $O_{3}(CO)_{2}(PR_{3})_{2}$ with HCl afforded Os- $(CO)(PR_3)$, HCl and then Os(CO)(PR_3), Cl., and with HgCl., both 113 and 114 were produced.

The dioxylene complexes 115 (Z = Cl or Br) underwent [122] one-electron oxidation affording paramagnetic cations; the unpaired electron was probably located in the π -orbitals of the dioxylene ligand. The structures of the violet and orange forms of Ru(CO)(PPh₃)₂[S₂C₂(CF₃)₂] (116 and 117) have been established [122] crystallographically.

Metal isocyanides

Treatment of $K_3[Fe(CN)_o]$ with MeOSO₃F gave [123] [Fe(CNMe)₅(CN)]-[SO₃F]. In alkaline media both the *cis*- and *trans*-isomers of Fe(CNMe)₄(CN)₂ decomposed [124] into Fe²⁺ and free isocyanide in an S_N^2 process involving nucleophilic attack by OH⁻. UV irradiation facilitated the exchange of CNMe with H₂O. The Mössbauer spectrum of [Fe{CN(*p*-MeC₆H₄)}₅]]I₃ has been reported [125].

Addition of amine to $[M(CNR)_6]^{2^*}$ (M = Fe or Ru; R = Me or Et) afforded [126] the "carbene" complexes 118 or 119, the particular species formed being determined apparently by steric effects. Thus $[Ru(CNMe)_6]^{2^*}$ reacted with MeNH₂ giving, after 15 min, 118 (R = R' = Me) but after longer periods [Ru-

 $(CNMe)_{4} \{C(NHMe)_{2}\}_{2}\}^{2*}$ was formed. Ethylamine behaved somewhat similarly giving 118 (R = Me, R' = Et), and 118 (R = Et, R' = Me); the latter existed as two isomers due to steric constraints within the planar carbene ligand. [Fe- $(CNMe)_{6}$ ^{2*} reacted with methylamine affording 119 (R = R' = Me), the structure of which has been confirmed crystallographically [127]. The mechanism of formation possibly involved prior formation of 118 (R = R' = Me), but because of the close proximity of the ligands in these Fe¹¹ species, the carbene in the intermediary 118 could behave as a nucleophile towards a second isocyanide ligand, thereby effecting ring closure to give 119. The hexaisocyanoiron(II) complex also reacted with EtNH, giving 119 (R = Me, R' = Et) and 119 (R =Et, $\mathbf{R}' = \mathbf{M}\mathbf{e}$), the latter being isolated as two isomers (vide supra). Ammonia added to $[Fe(CNMe)_{6}]^{2^{*}}$ giving 118 (R = H, R' = Me). When $[Ru(CNMe)_{6}]^{2^{*}}$ was treated with CD_3NH_2 , a mixture of 118 (R = Me, R' = CD₃) and 118 (R = CD_3 , R' = Me) was formed. On heating, the methyl and perdeuteromethyl positions were "scrambled" in a process presumably involving an intermediate like 119. After heating $[Ru(CNMe)_{s} \{C(NHEt)(NHMe)\}]^{2^{*}}$ in DMSO for 6 h, $[Ru(CNMe)_{1}(CNEt) \{C(NHMe)_{2}\}]^{2^{*}}$ (probably with trans geometry) was formed. Reaction of CD₃NH₂ with [Fe(CNMe)₆]²⁺ in refluxing methanol also afforded a perdeuteromethyl-containing species, 119, in which the majority of CD_3 was located in the chelated "carbene" ring, although some "scrambling" to isocvanide positions occurred.

A series of isocyanide complexes of osmium(II) and -(III) has been prepared (Scheme 11) [128]. Reaction of $[NH_4]_2[OsBr_6]$ with an excess of CNMe in ethanol gave trans-Os(CNMe) $_{4}$ Br₂, while addition of an excess of CNPh in THF to $Os(CO)_2(PEt_3)_3Cl_3$ (configuration 120, L = CO) provided $Os(CO)(CNPh)_3$ $(PEt_3)_2Cl_2$ (also with configuration 120, one L being CNPh, the other CO). Treatment of mer-Os(PR'_3)_3Cl_3 with CNR in acetone in the presence of AgClO₄ afforded $[O_{3}(CNR)(PR'_{3})_{3}Cl_{2}][ClO_{4}]$ and methylation of $K_{3}[O_{3}(CN)_{0}]$ by either Me₂SO₄ or MeOSO₃F gave [Os(CNMe)₆]^{2*}. The ruthenium complex Ru-(CNPh), (PPhMe,), Cl, (121) was obtained by the reduction of mer-Ru(PPhMe,), Cl_1 by zinc in refluxing THF in the presence of CNPh. The uncharged M^{If} isocyano species were inert to attack by ROH, RNH₂, or OEt⁻, but Os(CNPh)- $(PPhMe_2)_3Cl_2$ (122) reacted with BH_4^- giving the hydride 123. The cationic $[Os(CNR)_2(PR'_3)_3Cl][ClO_4]$ was also inert to amine or alkoxide attack, but primary amines reduced $[Os(CNR)_2(PR'_3)_2Cl_2]^*$ and $[Os(CNR)(PPhMe_2)_3Cl_2]^*$ to neutral Os^{II} compounds. $[Os(CNPh)(PEt_3)_3Cl_3][ClO_4]$ reacted with RNH. giving $Os(CNPh)(NH_2R)(PEt_3)_2Cl_2$ (R = Me or Et) (124) and $[Os(CNMe)_n]_2$ $[SO_3F]_2$, on treatment with MeNH₂ in refluxing methanol, afforded 125 and 126 (in the latter the "carbene" ligands probably had *amphi* configurations).

306

SCHEME 11

 $L = PPhMe_2$, PPhEt₂, PPh-n-Bu₂, PEt₃; R = Me, Ph, ρ -MeOC₆H₄, ρ -O₂NC₆H₄, CO

A correlation was drawn up between $\Delta\nu(RN\equiv C)$ ($\nu(NC)$ (free ligand) — $\nu(NC)$ -(coord. ligand)) and the reactivity of the bound CNR towards nucleophilic attack. It appeared that for coordinated CNMe, those species having $\Delta\nu(NC)$ greater than 65 cm⁻¹ were reactive towards MeNH₂, but it was suggested that the appropriate $\Delta\nu$ value for other isocyanides might be lower.

Metal nitrosyl and aryldiazo complexes

Mononitrosyl compounds

From dipole moment studies it was estimated [129] that the L group in $Fe(CO)_2(NO)L(SnPh_3)$ (L = CO, PPh₃, AsPh₃ or P(OPh)₃) was *cis* to the axial SnPh₃ ligand. This contrasted with the situation in analogous Mn and Co complexes. In Hg[Fe(CO)₂(NO){P(OPh)₃}]₂, the phosphite ligands probably occupy equatorial sites in the coordination sphere of each Fe atom.

In attempts to prepare species analogous to [Fe(CO)₂(NO)L₂]⁺ [130], M(CO)₃- $(PPh_3)_2$ (M = Ru or Os) was treated [131] with NOPF₆ in methanol. The products, however, were $[M(CO)_3(PPh_3)_2H]^{+}$, in accord with the reaction $NOPF_6 + MeOH \rightarrow$ HPF_6 + MeONO. These hydrides could be prepared by protonation of $M(CO)_3$ -(PPh₃)₂ using HPF₆, HClO₄ or HBF₄. A ruthenium nitrosyl, [Ru(CO)₂(NO)(PPh₃)₂], was produced by reaction of NOPF₆ in methanol with $Ru_3(CO)_9(PPh_3)_3$, but there was no evidence for the formation of $[Ru(CO)_3(NO)(PPh_3)]$; the analogous osmium cation could not be obtained by this route. The nitrosyl cations, $[M(CO)_2$ - $(NO)(PPh_3)_2$]X, could be conveniently produced by abstraction of Cl⁻ from $M(CO)(NO)(PPh_3)_2Cl using NaX (X = BPh_4 or PF_a) in the presence of CO (com$ plexes containing $P(C_0H_{11})_3$ were also prepared). Displacement of CO from $[M(CO),(NO)(PPh_3)_1]$ by PPh_3 afforded $[M(CO)(NO)(PPh_3)_3]^3$, and reactions with PPh₂Me and Ph₂PCH₂CH₂PPh₂ (diphos) gave $[Os(CO)(NO)(PPh_2Me)_3]^{\dagger}$, and $[M(CO)(NO)(PPh_3)(diphos)]^{\prime}$, respectively. With an excess of diphos and under more vigorous conditions, $[M(NO)(diphos)_2]^*$ was produced. Treatment of M(CO)(NO)(PPh₃)₂Cl with AgPF₆ in acetone afforded [M(CO)(NO)(PPh₃)₂-(acetone), and the acetone could be displaced by L (L = CO when M = Os or PPh₃ when M = Ru). Chlorination of $[M(CO)_2(NO)L_2]^*$ gave Ru(NO)L₂Cl₃ with some cis-Ru(CO)₂L₂Cl₂, and cis-Os(CO)₂L₂Cl₂, respectively. With HCl, however, the osmium cation afforded Os(CO)(HNO)(PPh₃)₂Cl₂. Addition of halide ion to the cations led to $M(CO)(NO)L_2X$ (X = Cl or I). Oxygenation of $[Os(CO)_2]$. $(NO)(PPh_3)_2$ ⁺ in the presence of Cl⁻ gave Os(NO)(PPh_3)_2(CO_3)Cl, presumably via Os(CO)(NO)(PPh₃)₂Cl as an intermediate. Methoxide addition afforded Os-(CO)(NO)(PPh₃)₂(CO₂Me) and borohydride reduction of [Os(CO)(NO)(PPh₃)₃]^{*} gave the stereochemically non-rigid Os(CO)(NO)(PPh₃)₂H. Addition of acetylenes, $RC \equiv CR'$ (R = R' = H, Ph or CO_2Me , R = H, R' = Ph) to $[Os(CO)(NO)L_2$ -(acetone) [PF_b] (L = PPh₃ or P(C_bH₁₁)₃) led to the formation of the fluxional $[Os(CO)(NO)L_2(RC_2R')][PF_6]$ (127) [132]. It was suggested that the coordinated acetylene undergoes "propeller-like" rotation.

Oxidative addition of C_2F_4 and $CF_3C\equiv CCF_3$ to $Ru(NO)L_2Cl$ (L = PPh₃, PPh₂Me, PPhMe₂) afforded [133] 128 and 129. However, $Ru(NO)(PPhMe_2)_2Cl$ reacted with $CF_2=CFR$ (R = Cl or CF_3) giving 130 while iodination of Ru(NO)-(PPh₂Me)₂Cl gave $Ru(NO)(PPh_2Me)_2Cl_2$ (131). Addition of CF_3CO_2H to 129 (L = PPh₃ or PPh₂Me) gave 132.

A temperature variation study of the ³¹P NMR spectra of $[M(NO)(diphos)_2]$ (M = Fe or Ru) revealed [134] that these complexes underwent a Berry-type pseudo-rotation (Fig. 8). It was suggested that the transition state had a square pyramidal geometry with axial NO, and that bending of the M—N—O bond might accompany pseudo-rotation thereby having an observable influence on the activation energy for the process.

Reduction of Ru(NO)(PPh₂Me)₂Cl₃ with Li metal in THF in the presence of PPh₃ gave [135] [Ru(NO)(PPh₂Me)(μ -PPh₂)]₂ (133), and [Ru(NO)(PPh₃)-(μ -PPh₂)]₂ could be obtained by an analogous reaction between Ru(NO)Cl₃.

 $2H_2O$, Li and PPh₃, or by thermolysis of Ru(NO)(PPh₃)₃H in decalin. The structure of 133 was confirmed crystallographically, and each Ru atom had a distorted octahedral geometry; the Ru—Ru distance (2.63 Å) was short enough to be consistent with a double bond formulation. Treatment of Ru-(NO)(PPh₃)₂Cl with Ph₂PCH₂CH₂PPh₂ (diphos) gave [136] Ru(NO)(diphos)₂Cl which, with NaBPh₃, afforded [Ru(NO)(diphos)₂][BPh₄]. The trigonal bipy-ramidal nature of this cation, isolated as an acetone solvate, was confirmed crystallographically; the NO group occupied an equatorial site. The Ru–N–O bond angle was 174° and the complex was regarded as a Ru⁰ (d⁸) complex containing NO^{*}.

The tetraphenylporphyriniron(III) complex, Fe(TPP)Cl absorbed nitric oxide giving [137] the paramagnetic Fe(NO)(TPP)Cl ($\mu = 4.5$ BM). The electronic spectrum of this species was similar to that of the CO adduct of the Fe¹¹ myoglobin complex and to nitrosyl complexes of ferric peroxidase. On this basis, the porphyrin adduct was described as Fe¹¹(NO^{*})(TPP)(Cl⁻), where, effectively, a whole electron was transferred from NO to Fe¹¹¹. Loss of "NOCl"

F1g. 8.
occurred in methanol, but the resultant Fe⁽¹⁾(TPP) gave a 1/1 adduct with NO which formed, with nitrogenous bases, a series of paramagnetic (S = 2) six-coordinate complexes.</sup>

By heating Na₂[Ru(NO)(NO₂)₄(OH)] in aqueous HCl the salt Na₂[Ru-(NO)Cl₅] was obtained [138]. The K' and NH₄' salts of [Ru(NO)X₅]²⁻ (X = Br or I) are isostructural with the octahedral K₂[Ru(NO)Cl₅]. The product of hydrolysis of [NH₄]₂[Ru(NO)Cl₅] was identified [139] crystallographically as [NH₄]₂[Ru(NO)(H₂O)Cl₄] in which the octahedral Ru atom was coordinated linearly by NO *trans* to H₂O. UV irradiation, or electrolytic or chemical reduction, of [Fe(NO)(CN)₅]²⁻ afforded [140] the paramagnetic [Fe(NO[•])(CN)₅]²⁻ in which the added electron was located on the NO ligand; this species eventually gave [Fe(NO)(CN)₅]³⁻.

At pH values below 7, $[Ru(NH_3)_o]^{3^*}$ reacted [141] with NO giving $[Ru-(NH_3)_5(NO)]^{3^*}$, but at values above 8.3, NO attacked a coordinated NH₃ giving $[Ru(NH_3)_5(N_2)]^{2^*}$. Reduction of $[Ru(NH_3)_5(NO)]^{3^*}$ to $[Ru(NH_3)_o]^{2^*}$ was achieved [142] using Cr^{2^*} in acid media. Nitric oxide reacted with *cis*- $[Ru-(NH_3)_4X_2]^{m^*}$ (X = H₂O, OH, Cl, Br or I) producing [143] *cis*- $[Ru(NH_3)_4(NO)-X]^{n^*}$. Preliminary studies of *cis*-*trans*-interconversion indicated that isomerisation did not occur readily in the solid state or in acid solution, but that the *cis*-form was slowly converted to the *trans*-isomer in alkaline solution.

Nitrosylation by NO of $[Os(NH_3)_5I]I_2$ gave [144] $[Os(NH_3)_5(NO)]I_3$ and $[Os(NH_3)_4(NO)I]I_2$; the latter was converted to the former in liquid ammonia. Attack by hydroxide ion on $[Os(NH_3)_5(NO)]X_3$ (X = Cl, Br or I) gave $[Os-(NH_3)_4(NH_2)(NO)]X_2$, but under different, more vigorous, conditions, *trans*- $[Os(NH_3)_4(NO)(OH)]X_2$ was formed. When this hydroxide was refluxed with hydrohalic acids, *trans*- $[Os(NH_3)_4(NO)X]X_2$ was produced. Although $[Os(NH_3)_5(NO)]^{3^*}$ reacted with refluxing hydrazine to give $[Os(NH_3)_5(N_2)]^{2^*}$, none of the other species underwent nucleophilic attack at the nitrosyl ligand.

The likelihood of nucleophilic attack at coordinated NO has been correlated [145] with $\nu(NO)$, and the NO stretching force constant (f(NO)), in a series of nitrosyl complexes (Table 1). Thus, species with $\nu(NO) > 1886$ cm⁻¹ or f(NO) > 13.8 mdyn/Å will be attacked at the nitrosyl group by OH⁻, hydrazine, hydroxylamine or azide ion.

Dinitrosyl complexes

Treatment of FeCl₂ in methanol containing NEt₃ or tetramethylethylenediamine with NO gave [146] [Fe(NO)₂Cl₂]⁻ (isolated as the NHEt₃⁻ salt), but when PPh₃ was added to the reaction mixture, Fe(NO)₂(PPh₃)Cl and Fe-(NO)₂(PPh₃)₂ were formed. The synthesis of [Fe(NO)₂I]₂, from solid FeI₂ and NO, has been reported [147] in detail.

Partial or total displacement of fluoride ion occurred [148] when $Fe(NO)_2$ -(PF₃)₂ was treated with hydroxide or alkoxide ions, respectively. Thus, in diisopropylamine/water mixtures, OH⁻ reacted to give [$Fe(NO)_2(PF_2O)_2$]²⁻ but with Ba(OH)₂ in THF, [$Fe(NO)_2(PF_3)(PF_2O)$]⁻ was formed. Ethylation of these produced $Fe(NO)_2(PF_3)_{2.n}$ (PF_2OEt)_n (n = 1 or 2); with alkoxides, $Fe(NO)_2(PF_3)_2$ afforded $Fe(NO)_2[P(OR)_3]_2$ (R = Me, Et, n-Pr, i-Pr, n-Bu or Ph) directly. The ESR spectrum of $Fe(NO)_2(SbR_3)Br$ (R = Et, Ph or 4-Me₂NC₆H₄) has been reported [149]; hyperfine splittings due to Sb and Br were observed. In a reinvestigation of complexes originally formulated [150] as $[Fe(NO)_2-L]'X^-$ (L = thiourea, thioacetamide, thiobenzamide, *o*-aminothiophenol and diphenylthiourea) it was shown [151] that the compounds were non-electrolytes, did not contain bidentate L, and probably had tetrahedral structures. Ru(NO)₂(PPh₃)₂ was prepared [152] by reaction of NO with Ru(PPh₃)₂H₄, while with NOCl, Ru(NO)(PPh₃)₂Cl₃ was produced; CO gave Ru(CO)(PPh₃)₃H₂.

The reaction between $\operatorname{Ru}_3(\operatorname{CO})_{10}(\mu$ -NO)₂ and PPh₃, in which 134 was formed, obeyed [153] first order kinetics. There was no dependence on PPh₃ concentration over a wide range, but with more alkylated phosphines, e.g. PPh₂Me, 134 slowly cleaved to give $\operatorname{Ru}(\operatorname{CO})_3 L_2$. However, the rate of primary substitution remained virtually the same and was independent of the nature, as well as of the concentration, of the substrate. The mechanism therefore appeared to involve initial dissociation, giving $\operatorname{Ru}_3(\operatorname{CO})_9(\mu$ -NO)₂. A comparison of the data collected here was made with that obtained from reactions of $\operatorname{Ru}_3(\operatorname{CO})_{12}$ with tertiary phosphines [154]. Both sets of information were consistent with a dissociative mechanism, and it was clear that the bridging NO groups played no important role in the process. It was suggested, however, that after monosubstitution of $\operatorname{Ru}_3(\operatorname{CO})_{12}$, giving $\operatorname{Ru}_3(\operatorname{CO})_{11}L$, some change in re-

activity of the Ru atoms occurred, possibly occasioned by the transient formation of labile bridging carbonyl species.

Photolysis of $Os(CO)_5$ in the presence of NO in an argon matrix at 20 K afforded [155] some $Os(CO)_2(NO)_2$. Photolysis of $Fe(CO)_2(NO)_2$ gave only $Fe(CO)_5$ and NO.

Aryldiazo complexes

Addition of $[ArN_2][BF_4]$ to $Fe(CO)_3(PPh_3)_2$ and $[Fe(CO)_3(NO)]^-$ afforded [156] 135 (Ar = p-XC₆H₄; X = H, F, Cl, Br, NO₂, OMe, OH, but not NMe₂) and the unstable, tetrahedral $Fe(CO)_2(NO)(N_2Ph)$, respectively. At -70°, the latter reacted with PPh₃ giving $Fe(CO)(NO)(N_2Ph)(PPh_3)$; no products were obtained by reaction of aryldiazonium salts with $[(\pi-C_5H_5)Fe(CO)_2]^-$ or $[Fe(CO)_4$ -(SnPh₃)]⁻. It was shown that the aryldiazo group had lower π -acceptor properties than NO, and resisted catalytic hydrogenation. A preliminary X-ray crystallographic study of 135 (X = H) revealed that the Fe--N--N bond angle is ca. 180° while the N--N-Ph angle is ca. 124°; the N--N distance is 1.19 Å.

The coordinatively unsaturated $Ru(PPh_3)_3X_2$ (X = Cl or Br) and Os(PPh_3)_3-Br₂ reacted with [ArN₂][BF₄](Ar = p-C₆H₄; X = Me, OMe, Cl, NO₂ or H) in the presence of LiX giving [157] M(N₂Ar)(PPh₃)₂X₃ (M = Ru or Os). These species could also be synthesised by treating MX₃ with 1,3-diaryltriazenes in ethanol in the presence of PPh₃; they were resistant to protonation. M(CO)- $(PPh_3)_3HCl (M = Ru or Os) afforded [M(CO)(NH=NAr)(PPh_3)_2Cl(BF_4)] on treat$ $ment with [ArN_2][BF_4], and the corresponding osmium perchlorate was pro$ $duced using [ArN_2][ClO_4]. In these species, the BF_4⁻ or ClO_4⁻ was believed to$ be coordinated to the metal. Then treatment with LiCl and with CO led to the $isolation of M(CO)(NH=NAr)(PPh_3)_2Cl_2 (136) and [M(CO)_2(NH=NAr)(PPh_3)_2 Cl][BF_4], respectively. Recrystallisation of the former (Ar = p-MeC_0H_4) caused$ isomerisation to 137, and treatment of the latter with LiCl gave mixtures of $M(CO)(NH=NAr)(PPh_3)_2Cl_2 and cis-M(CO)_2(PPh_3)_2Cl_2. Treatment of M(CO) (PPh_3)_3H_2 with [ArN_2][BF_4] gave [M(CO)(NH=NAr)(PPh_3)_3H][BF_4] (138),$ and while the osmium complex did not react with CO, the ruthenium com $pound afforded [Ru(CO)_2(NH=NAr)(PPh_3)_2H][BF_4] (139). Reaction of 138$

with LiCl in cold acetone/methanol mixtures gave a mixture of isomers of Ru-(CO)(NH=NAr)(PPh₃)₂HCl (140 and 141); conversion of the former into the latter was rapid on recrystallisation. In boiling acetone/methanol mixtures, however, M(CO)(NH=NAr)(PPh₃)₂Cl₂ was formed. The structure of Ru[N₂-(p-MeC_oH₄)](PPh₃)₂Cl₃, inadvertently obtained [158] by reaction of Ru(PPh₃)₃-Cl₂ with the diazonium salt (addition of LiCl improved yields), has been determined crystallographically. The molecule (142) has an effectively linear Ru-N-N bond system (171.2°), while the N-N-Ar bond angle is 135.9°.

Metal-assisted diazotisation occurred when cis-[Ru(bipy)₂(NO)Cl]^{2*} was treated with ArNH₂ (Ar = p-MeC₆H₄ or p-MeOC₆H₄) in acetonitrile [159]. The product was cis-[Ru(bipy)(N₂Ar)Cl]^{2*} which, on treatment with KI gave, when Ar = p-MeOC₆H₄, p-MeOC₆H₄I and Ru(bipy)₂I₂; with β -naphthol and NaOH in ethanol, 143 and Ru(bipy)₂(OH)Cl were produced.

π -Cyclopentadienyl complexes

Binuclear cyclopentadienyl compounds

Reaction of Fe₂(CO)₉ with benzvalene (144) gave cis-[(π -C₅H₄Me)Fe-(CO)₂]₂, cis- and trans-[(π -C₅H₅)Fe(CO)₂]₂ (involving loss of a CH group from a C₆H₆ precursor) and 145 [160]. A mechanism is outlined in Scheme 12. Ben-

zobenzvalene (146) afforded with Fe₂(CO), only 147 and no bis- π -indenyl complexes were detected, possibly because a $\sigma - \pi$ intermediate, e.g. 148, is impossible for benzobenzvalene. It may be recalled that benzosemibullvalene (149) gave [161] only $\sigma - \pi$ complexes with Fe₂(CO), viz. 150.

Cyclopentadiene reacted [162] with $\operatorname{Ru}_3(\operatorname{CO})_{12}$ giving, as an intermediate, $C_5H_6\operatorname{Ru}(\operatorname{CO})_3$. This underwent a hydride shift affording $(\pi-C_5H_5)\operatorname{Ru}(\operatorname{CO})_2H$ which very slowly dimerised, with H₂ loss, in refluxing heptane in the absence of air. When air was admitted, 60-70% yields of *trans*-[$(\pi-C_5H_5)\operatorname{Ru}(\operatorname{CO})_2$]₂ were obtained. Cyclopentadiene also reacted with $\operatorname{Ru}_4(\operatorname{CO})_{12}X_4$ (X = H or D) afford-

(149)

(150)

ing exclusively $(\pi - C_5 H_5) Ru(CO)_2 H$ proving that the source of hydride ligand was $C_5 H_6$ itself. While $Os_4(CO)_{12} H_4$ did not react with $C_5 H_6$ in refluxing octane, $Os_3 (CO)_{12}$ gave a mixture of uncharacterised products, and $Os_3(CO)_{10} H_2$ afforded small amounts of $(\pi - C_5 H_5) Os(CO)_2 H$.

An X-ray crystallographic structure determination of 151 [163], obtained from SiMe₂(C₅H₅)₂ and Fe(CO)₅, revealed that the Fe₂(μ -CO)₂ ring is non-planar and is folded about the Fe—Fe axis (angle of fold ca. 160°) away from the C₅H₄ rings; the Fe—Fe distance is 2.51 Å. Fe₂(CO)₉ reacted with 6-dimethylaminofulvene giving 152 whose structure was confirmed crystallographically (Fe—Fe distance 2.74 Å) [164].

Carbon monoxide was displaced when isocyanide was added [165] to $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ (dienyl = C_5H_5 , $C_5H_4\text{Me}$, C_9H_7). The products, $(\pi\text{-dienyl})_2$ -Fe₂(CO)_{4-n}(CNR)_n (R = Me, Et, i-Bu, t-Bu, CH₂Ph or C₆H₁₁) existed in solu-

References p. 372

tion as mixtures of *cis*- and *trans*-carbonyl- and isocyanide-bridged tautomers. The incidence of CNR-bridged species decreased as the bulk of the R group increased.

From previous variable temperature NMR spectral data obtained [166] from $[(\pi-C_3H_3)Fe(CO)_2]_2$, and from new information relating to $(\pi-C_3H_5)_2$ -Fe₂(CO)₂(CNMe)₂, the possible pathways whereby bridging and terminal ligands can be interchanged in such binuclear and other related species have been described [167]. The data can be understood in terms of two main assumptions: (i) that bridges open and close only in pairs; and (ii) that the rotational barriers in unbridged tautomers contribute [168] critically to activation energies when rotations about metal—metal bonds are required. In relation to the first point, one-for-one bridge-terminal site interchanges are not

SCHEME 13

only unnecessary but their occurrence is incompatible with the collected data. The various pathways for bridge-terminal interchange in, for example, $[(\pi - C_5H_5)Fe(CO)_1]_2$, are illustrated in Scheme 13.

The following points arose from this study: (a) molecules in which the ground state structure had no bridges could effect exchange of ligands between metals via a bridged intermediate; (b) in a molecule having three bridges, two could be opened, the bridging system being reconstituted by ligands previously located in terminal positions; (c) in a molecule with only one bridging group, two terminal ligands could move into bridging positions thereby generating a triply-bridged intermediate, which would then revert to a mono-bridged species incorporating the initial bridging group in a terminal position; and (d) in binuclear systems where bridged and non-bridged species had roughly similar stabilities it was probable that there would be very low activation energies for isomer interconversion and ligand site exchange, since the activation energy for opening and closing bridges, and that for rotation about the M-M bond, would act separately rather than wholly or partially together. In solution $[(\pi - C_5H_5)Cr(NO)_2]_2$, $[(\pi - C_5H_5)Mn(CO)(NO)]_2$ and $[(\pi - C_5H_5)Fe(CO)_2]_2$ existed [169] as cis- and trans-isomers, the ratio of the former to the latter decreasing in the order Fe > Mn > Cr. The activation energies of *cis/trans* interconversion, and of bridge/terminal ligand exchange, decreased in the order Cr > Mn > Fe. For the iron and manganese complexes, the ligand site exchange process was more rapid for the *trans*-isomers than for the *cis*-forms.

From pressure, volume and temperature measurements of the reactions between $[(\pi - C_5H_5)Fe(CO)_2]_2$ and BF₃ or BBr₃, it was established [170] that 1/1 adducts were formed. Binding of the Lewis acid to the metal complex occurred via the bridging CO groups. Similarly, $[(\pi - C_5H_5)Fe(CO)]_4$ formed 1/1 and 1/2 adducts with BX₃ (X = F, Cl or Br). The X-ray structure determination of the 1/2 adduct formed between $[(\pi - C_5H_5)Fe(CO)_2]_2$ and AlEt₃, 153, confirmed [171] that the aluminum atoms are bonded to bridging CO groups. The Fe—Fe distance is 2.49 Å, and the dihedral angle formed by the two planes of the Fe(μ -CO)₂Fe bridging system had increased, relative to that in the uncomplexed dimer, by 3°. It has been suggested [172] by analogy with the known structure of [Mg· (py)₄][(π -C₅H₅)Mo(CO)₃]₂, that [Mg(py)₄][(π -C₅H₅)Fe(CO)₂]₂ contains a Fe— C—O-Mg—O-C—Fe bonding system, viz. 154. Lanthanide tricyclopentadienyl compounds formed [173] adducts with [(π -C₅H₅)Fe(CO)₂]₂. Thus, with Sm-

OC Fe C PYF Pyr Mg pyr l O C Fe CO

(153)

(154)

 $(C_{5}H_{4}Me)_{3}$, a 1/2 adduct, involving bonding between bridging CO groups and the lanthanide element, could be isolated. Adducts were also observed with $(\pi-C_{5}H_{5})Fe(CO)(\mu-CO)_{2}Ni(\pi-C_{5}H_{5})$ (again utilising CO bridges) and $(\pi-C_{5}H_{5})$ - $Fe(CO)_{2}X$ (X = Cl or I), (interaction probably occurred between X and the lanthanide element). No lanthanide complex addition was observed with Fe- $(CO)_{2}(NO)_{2}$, $(C_{8}H_{8})Fe(CO)_{3}$, $Fe(NO)_{2}(PPh_{2}Me)_{2}$, $Fe(NO)(S_{2}CNMe_{2})_{2}$ or Ru- $(NO)(PPh_{3})_{2}Cl_{3}$.

Monomeric cationic species

Oxidation of $[(\pi - C_{s}H_{s})Fe(CO)_{2}]_{2}$ with molecular oxygen in acetone containing aqueous HBF, afforded [174] $[(\pi - C_{3}H_{5})Fe(CO)_{2}(H_{2}O)]^{\dagger}$ which, on treatment with X⁻ (Cl, Br, NCO, CN, NO₃, N₃, O₂CH or O₂C₂Cl₃) or L (PPh₃, pyridine, hydrazine, S(n-Bu)₂) provided $(\pi - C_{s}H_{s})Fe(CO)_{2}X$ or $[(\pi - C_{s}H_{s})Fe$ $(CO)_{2}L$]' (as the BF₄ salt). In acetone, AgY (Y = ClO₄, BF₄ or SbF₆) oxidised [175] $[(\pi-C_5H_5)Fe(CO)_2]_2$ to $[(\pi-C_5H_5)Fe(CO)_2(acetone)]$ Y and again, with X⁻ (Cl or Br), or L (CO, AsPh₃, SbPh₃, MeCN, PhCH₂CN, SPhMe or (π - $C_{1}H_{2}Fe(CO)_{1}I$, the species $(\pi - C_{1}H_{2})Fe(CO)_{2}X$ and $[(\pi - C_{1}H_{2})Fe(CO)_{2}L]Y$, were formed. However, with AgY ($Y = NO_3$, O_2CCF_3 , SCN, NCO, O_2CPh , p-MeC₆H₄SO₂ or OP(=O)(OPh)₂). the dimeric carbonyl afforded $(\pi - C_5H_5)$ Fe-(CO)₂Y directly. The cation $[(\pi - C_5H_5)Fe(CO)_3]^+$ could be obtained from $[(\pi - C_5H_5)Fe(CO)_3]^+$ C_5H_5)Fe(CO)₂]₂ using NO₂ as a one-electron oxidant [176]. NO₂, in this respect, is similar to NOPF₆ since, in polar solvents, it dimerises to N_2O_4 which behaves as [NO'][NO₃]. A crystallographic determination of the structure of $[(\pi - C_5H_5)Fe(CO)_1]$ established [177] that the iron atom has quasi-octahedral geometry and that the C-O distances are shorter than in the isoelectronic $(\pi - C_s H_s) Mn(CO)_3$.

Reaction of $[(\pi - C_5H_5)Fe(CO)]_4$ with BCl₃ in liquid HCl gave [178] [{(π -C₅H₅)Fe(CO)}_4H_2][BCl_4]_2. It was believed that the hydrogen atoms occupied two non-adjacent edges of the Fe₄ tetrahedron. The tetramer, an improved preparation of which was described, reacted with PF₅ in liquid HCl to give [(π -C₅H₅)Fe(CO)]₄^{*}, in a reaction consistent with previous observations [179].

The kinetics of oxidation of $[(\pi \cdot C_5H_5)Fe(CO)_2]_2$ by $[Ru(bipy)_2Cl_2]^*$, and by $[(\pi \cdot C_5H_5)Fe(CO)]_4^*$ in acetonitrile, in which the ultimate product was $[(\pi \cdot C_5H_5)Fe(CO)_2(NCMe)]^*$, have been investigated [180]. The rate-determining step appeared to involve an outer-sphere electron transfer from the dimer, giving, initially, $[(\pi \cdot C_5H_5)Fe(CO)_2]_2^*$. This may then degrade via the reaction:

 $[(\pi - C_{\varsigma}H_{\varsigma})Fe(CO)_{2}]_{2}^{*} \xrightarrow{-e^{-}} [(\pi - C_{\varsigma}H_{\varsigma})Fe(CO)_{2}]_{2}^{2^{*}} \xrightarrow{MeCN} 2 [(\pi - C_{\varsigma}H_{\varsigma})Fe(CO)_{2}(NCMe)]$ or via the process:

$$[(\pi - C_5 H_5)Fe(CO)_2]_2^* \xrightarrow{\text{NCMe}} [(\pi - C_5 H_5)Fe(CO)_2(\text{NCMe})]^* + [(\pi - C_5 H_5)Fe(CO)_2]^*$$
$$\xrightarrow{-e^-} [(\pi - C_5 H_5)Fe(CO)_2]^* \xrightarrow{\text{MeCN}} [(\pi - C_5 H_5)Fe(CO)_2(\text{NCMe})]^*$$

Complexes containing M-C o-bonds, and carbene species

Reaction of Na[$(\pi-C_5H_5)Fe(CO)_2$] with CH₂CII, and [$(\pi-C_5H_5)Fe(CO)_2$]₂ with PhCOCH=CHI, afforded ($\pi-C_5H_5$)Fe(CO)₂CH₂Cl [181] and a mixture [182] of ($\pi-C_5H_5$)Fe(CO)₂CH=CHCOPh and ($\pi-C_5H_5$)Fe(CO)₂I, respectively.

Treatment of Na[$(\pi-C_5H_5)Fe(CO)_2$] with (NC)₂C=CXCl (X = H or Cl) in THF gave [183] $(\pi-C_5H_5)Fe(CO)_2$ [CH=C(CN)₂] (X = H), and low yields of *cis*- and *trans*- $(\pi-C_5H_5)_2Fe_2(CO)_2$ [C=C(CN)₂](155) (when X = Cl). Using C(CN)₂-

Br₂, low yields of $(\pi$ -C₅H₅)₂Fe₂(CO)₃[C(CN)₂] (156), $(\pi$ -C₅H₅)Fe(CO)₂[CH-(CN)₂] and $(\pi$ -C₃H₃)Fe(CO)₂Br were produced. At --70°, Na[$(\pi$ -C₅H₅)Fe(CO)₂] reacted [184] with (F₃C)₂C=C=C(CF₃)₂ giving 157. A series of isomers, $(\pi$ -C₅H₅)-Fe(CO)₂(C₆F₄X) (X = 2- or 3-H; 2-, 3- or 4-Br) was prepared [185] either by reaction of C₆F₄Br₂ with Li[$(\pi$ -C₅H₅)Fe(CO)₂] or by the reaction of LiC₆F₄Br with $(\pi$ -C₅H₅)Fe(CO)₂I. With n-butyllithium, these complexes underwent Li/Br exchange in preference to Fe-C bond cleavage. Thus, treatment of the appropriate isomers of $(\pi$ -C₅H₅)Fe(CO)₂(C₆F₄Br) with Li-n-Bu afforded $(\pi$ -C₅H₅)Fe-(CO)₂(C₆F₄Li) which reacted in turn with $(\pi$ -C₅H₅)Fe(CO)₂I giving 158 and 159.

Reaction of ferrocenyllithium with $(\pi - C_5 H_5)Fe(CO)_2Br$ at -70° afforded [186] $(\pi - C_5 H_5)Fe[\pi - C_5 H_4Fe(CO)_2(\pi - C_5 H_5)]$, while addition of Na[$(\pi - C_5 H_5)Fe$ -

 $(CO)_2$] to $(\pi - C_5H_3)Fe(\pi - C_5H_4COCl)$ gave $(\pi - C_5H_5)Fe[\pi - C_5H_4COFe(CO)_2(\pi - C_5H_5)]$. Bromination of the σ -bonded σ - and m-carboran-1-yl complexes $RCB_{10}H_{10}CFe-(CO)_2(\pi - C_5H_5)$ gave [187] $RCB_{10}H_9BrCFe(CO)_2(\pi - C_5H_5)$ and treatment with an excess of bromine did not lead to Fe—C bond cleavage. Fe—C bond cleavage did occur, however, when these species were treated with HgCl₂; $(\pi - C_5H_5)Fe(CO)_2Cl$ was released in these reactions.

Treatment of m-ClCOCB₁₀H₁₀CCOCl with Na[$(\pi$ -C₅H₅)Fe(CO)₂] afforded, initially, m-B₁₀H₁₀C₂[COFe(CO)₂(π -C₅H₅)]₂, which was readily decarbonylated to give m-B₁₀H₁₀C₂[Fe(CO)₂(π -C₅H₅)]₂. Polarographic reduction of RCB₁₀H₁₀-CCH₂Fe(CO)₂(π -C₅H₅) resulted in the consumption of two electrons and the formation of [$(\pi$ -C₅H₅)Fe(CO)₂]⁻, and this anion was also produced when carboranyl species were reduced with sodium amalgam.

Addition of sodium mentholate to $[(\pi-C_5H_5)Fe(CO)_2(PPh_3)]^*$ afforded [188] (+)- and (--)-forms of the diastereoisomeric species 160. These compounds did not racemise in solution, even at relatively high temperatures. However, the methoxycarbonyl species, produced after transesterification in methanol, were

optically inactive (Scheme 14). A series of inversion steps was proposed as a mechanism for racemisation. Using the optically active mentholphosphite, $P(OCH_2CH_2O)(OC_{10}H_{19})$, L, the diastereomeric species $(\pi - C_5H_5)Fe(CO)L(COMe)$ was also prepared.

Reaction of $Fe_2(CO)_9$ with the tris(pyrazolyl)borate ligand, $[HB(pyz)_3]^-$, in the presence of methyl iodide, led [189] to the formation of $Fe(CO)_2(COMe)$ - $[HB(pyz)_3]$ and $Fe[HB(pyz)_3]_2$. IR spectral studies of the acyl indicated the presence of conformers presumably differing in the rotational orientation of the acetyl group relative to the remainder of the molecule. The iron atom had a slightly distorted octahedral geometry, and the pyrazolylborato ligand was tridentate.

Mössbauer spectral data have been correlated [190] with $\nu(CO)$ for the species $(\pi - C_5H_5)Fe(CO)LQ$ (L = CO or PPh₃; Q = COMe, SO₂Me, CH₂Ph, SO₂-CH₂Ph, SO₂(p-FCH₂C₆H₄), Me). It was shown that the σ -donor ability of the acetyl group was greater than that of RSO₂⁻.

Treatment of $(\pi$ -C₅H₅)Fe(CO)(PPh₃)COMe with methylfluorosulfonate gave [191] $[(\pi$ -C₅H₅)Fe(CO)(PPh₃){C(OMe)Me}]^*. A complex, 161, obtained by the route outlined in Scheme 15, has been formulated [192] as a metalcoordinated carbene derivative lacking heteroatom stabilisation. The reactions of this unusual compound are also summarised in Scheme 15. Reaction of 161 with cycloheptatriene, and with $(\pi$ -C₅H₅)Fe(CO)₂Et, afforded $[C_7H_7]^*$ and $[(\pi$ -C₅H₅)Fe(CO)₂(C₂H₄)]^*, respectively. The formation of 161, which involved α -hydride abstraction, is almost without precedent. Hydride abstraction from $(\pi$ -C₅H₅)Fe(CO)₂CDMePh using Ph₃C^{*} afforded $[(\pi$ -C₅H₅)Fe(CO)₂(CH₂=CDPh)]^{*}, and similar treatment of $(\pi$ -C₅H₅)Fe(CO)₂CH₂Ph gave only Ph₃CCH₂Ph. 161 underwent neither of these processes, and so its alternative formulation, viz. 162, may be dismissed.

The structure of the product 163, obtained [193] by treatment of $[(\pi - C_{s}H_{s})Fe(CO)(CNMe)_{2}]^{*}$ with BH_{4}^{-} , has been determined [194] crystallographically. The metal chelate ring system has a "boat" geometry, the molecular dimensions of which are outlined in Fig. 9. The Fe–C distances are identical to the average value for Fe–C(sp^{2}) bonds and are not significantly different to

the Fe-C(CNMe) distances in 119 (M = Fe, R = R' = Me); in the latter, the Fe-C(carbene) distance is 2.02 Å, however. The C-N distances in 163 are in the

range for a double bond, while the B–N (nitrogen regarded as sp^2 hybridised) distance is consistent with a bond order of unity.

References p. 372

Decarbonylation, carbonylation and carboxylation reactions

Photochemical decarbonylation of $(\pi$ -1-Me-3-PhC₅H₃)Fe(CO)(PPh₃)COMe and of $(\pi$ -C₅H₅)Fe(CO)(PPh₃)COCH₂CHMePh proceeded [195] with high stereospecificity at the iron atom. Modest decarbonylation of $(\pi$ -C₅H₅)Fe(CO)₂(COR) could be effected [196] by Rh(PPh₃)₃Cl. The products were $(\pi$ -C₅H₅)Fe(CO)₂R, $(\pi$ -C₅H₅)Fe(CO)(PPh₃)COR and, of course, Rh(CO)(PPh₃)₂Cl. When R = Me, 40 % of the alkyl and 4 % of the acyl were obtained but when R = CHMePh, only the alkyl (54 %) was isolated. Neither alkyl nor acyl was detected in reactions involving R = CMePh₂, CPh₃, CH=CHPh, SO₂Me, or SO₂Ph, although in every case substantial amounts of Rh(CO)(PPh₃)₂Cl were formed. There was no reaction when R = CF₃, or with $(\pi$ -C₅H₅)Fe(CO)(PPh₃)SO₂CH₂Ph.

Oxidative carboxylation of $(\pi$ -C₅H₅)Fe(CO)₂R (R = CH₂C₆H₁₁, CH₂CH₂Ph or C₆H₁₁), using CuCl₂ in the presence of R'OH (R' = Et, i-Pr or t-Bu), gave [197] RCO₂R' without epimerisation. Similar oxidation when R = CH₂(*p*-FC₆H₄) or CH₂CH₂(*p*-C₆H₄), in methanol using Ce⁴⁺ in the presence of LiCl, gave [198] RCO₂Me with some RCl and ROMe. A mechanism was formulated for these reactions (Scheme 16).

SCHEME 16

Addition and insertion reactions

The kinetics and mechanism of SO₂ insertions into the Fe—C bond of $(\pi$ -C₅H₅)Fe(CO)₂R (R = alkyl or aryl) have been investigated [199]. When R = alkyl, the reaction rate decreased with increasing values of Taft's σ^* constant for R, and with increasing values of ν (CO) for the reacting species; the rate decreasing in the order R = Et > Me > CH₂OMe > CH₂CN. The rate also decreased as the bulkiness of R increased, in the order R = Me > i-Pr > CH₂CH₂CMe₃ > CH₂-CMe₃ > CH₂-CMe₃ > t-Bu. When R = aryl, the rate constant decreased as a function of increasing Taft's constant σ^* , viz. in the order R = p-MeOC₆H₄ > p-MeC₆H₄ > m-MeC₆H₄ ~ Ph. Methylation of the cyclopentadienyl ring (when R = CH₂Ph) caused an increase in the rate of insertion, but when R = aryl, the trend was irregular. These had characteristically large and negative values of ΔS^* , and low values

Fig. 10.

of ΔH^{\dagger} . The observation that the rate of reaction was dependent on the nature of R indicated that cleavage of the Fe—R bond was an electrophilic process. The results were generally consistent with backside attack by SO₂ on the α carbon atom. This presumably led to heterolysis of the Fe—R bond and formation of a contact ion pair, viz. $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]^{\dagger}[O_2\text{SR}]^{-}$ (Fig. 10) These ions appeared to recombine rapidly giving the O-sulfinate, $(\pi\text{-}C_5\text{H}_5)\text{Fe}-$ (CO)₂OS(=O)R, which subsequently rearranged [200] to the thermodynamically more stable S-bonded sulfinate, $(\pi\text{-}C_5\text{H}_5)\text{Fe}(\text{CO})_2\text{S}(=\text{O})_2\text{R}$. Although the O-sulfinates could be detected spectroscopically, they proved impossible to isolate from reactions in liquid SO₂. Sulfur dioxide insertion into the Fe—C bond in 164 (which was epimeric at Fe), giving 165 occurred [201] with re-

tention of configuration at the metal atom. This result contrasted with previous observations [202].

Addition of SO₃ to the acetylenic bond in $(\pi$ -C₃H₅)Fe(CO)₂CH₂C=CR (R = Me or Ph) afforded [203] the sultone derivative 166; these species were more stable than the corresponding sultines, 167, and were resistant to attack by HCl.

The structure of the product 168, obtained [204] by addition of TCNE to $(\pi-C_5H_5)Fe(CO)_2[CH_2C(Me)=CH_2]$, has been elucidated [205] crystallographically. The Fe—C bond length is 2.10 Å, suggesting that the covalent radius of the iron in this compound is ca. 1.33 Å. The allenyl complexes, $(\pi-C_5H_5)Fe(CO)_2CH=C=CHR$ (R = H or Me), were prepared [206] by treating Na[$(\pi-C_5H_5)$ -

Fe(CO)₂] with propargyl benzenesulfonate or by displacement of the isobutylene in $[(\pi-C_5H_5)Fe(CO)_2(isobutylene)]^*$ by the appropriate allene. The complex with R = H underwent addition with TCNE, giving 169; there was evidence for the intermediacy of an acetylene complex in the reaction (Fig. 11). Electrophilic addition to the allenyl species of *p*-toluenesulfonylisocyanate gave 170 but not 171, while β , β -dicyano-o-chlorostyrene and N-carbomethoxysulfonylamine gave 172 and 173, respectively. However, $(\pi-C_5H_5)Fe(CO)_2[CH_2C\equiv CMe]$

reacted with MeO_2CNSO_2 giving 174 in a process apparently involving an allenic intermediate (Fig. 12). The evidence that allenyl derivatives could react via ace-tylenic intermediates, and that acetylenyl compounds reacted via allenylic der-

Fig. 12.

ivatives, was as follows: (i) protonation of $(\pi-C_5H_5)Fe(CO)_2[CH=C=CH_2]$ gave $[(\pi-C_5H_5)Fe(CO)_2(HC\equiv CMe)]^*$, which reacted with water giving $(\pi-C_5H_5)Fe(CO)_2CH_2CO_2Me$ and $(\pi-C_5H_5)Fe(CO)_2COEt$; (ii) protonation of $(\pi-C_5H_5)Fe(CO)_2[CH_2C=CMe]$ gave the cationic allene complex, $[(\pi-C_5H_5)Fe(CO)_2(H_2C=C=CMe)]^*$, as a single stereoisomer (Fig. 13). The formation of this allene species was comparable with the known [207] fluxional behaviour of $(Me_2-C=CMe_2)Fe(CO)_4$.

A detailed study of the reactions of $(\pi-C_5H_5)Fe(CO)_2R$ (R = 2-alkenyl or 2-alkynyl), with chlorosulfonyl isocyanate has been made [208]. The 2-alkenyl complexes afforded the pyrrolidone (175) and the N-acyl-N-(chlorosulfonyl or sulfamoyl)amido species (177), (X = SO₂Cl, H, SO₂NHPh, SO₂NEt₂ or COPh; R, R' = H, Me, or Ph) depending on whether a methyl group was present or absent at the C(2) atom of the alkenyl group. However, the 2-alkynyl complexes afforded the Δ^3 -pyrrolinones (176), (X = SO₂Cl, H, SO₂NHPh, or SO₂-NEt₂; R, R' = H, Me, Ph or CH₂Fe(CO)₂(π -C₃H₅)) exclusively. It was observed

(177)

 $[M] \equiv (\pi - C_5 H_5) Fe(CO)_2$

Fig. 14.

that while 175 and 176 were derived by cycloaddition of $CISO_2NCO$ to the σ bonded hydrocarbon fragment, and that this was accompanied by 1,2-metal migration, 177 resulted from insertion of $CISO_2NCO$ into the Fe—C bond. The mechanisms of formation of 175 and 176 are shown in Fig. 14, and some reactions of 175 (X = SO_2Cl; R = R' = Me) and a species, 178, closely related to the Δ^3 -pyrrolinones, 176, are summarised in Schemes 17 and 18.

Treatment [209] of the vinylic species 179, with hexafluoroacetone gave 180, in which formal insertion of $(CF_3)_2CO$ into a C—H bond of the cyclopentadienyl ring had occurred. On heating 179 lost PPh₃ giving 181.

Reaction of the cationic complexes $[(\pi - C_5H_5)Fe(CO)_2(olefin)]^*$ (olefin = C_2H_4 , cyclopentene or cyclohexene) with enolate anions (R = CH(CO_2Et)_2, CMe(CO_2Et)_2, CH(COMe)(CO_2Et)) gave [210] the alkyl complexes, $(\pi - C_5H_5)$ -

SCHEME 18

 $[Fe] \equiv (\pi - C_5H_5)Fe(CO)_2$

Fe(CO)₂CH₂CH₂R (182 and 183). Hydride abstraction from 181 (R = CH(CO₂-Et)₂) afforded 184. However, reaction of $[(\pi - C_5H_5)Fe(CO)_2(C_2H_4)]^{\dagger}$ with $(\pi - C_5H_5)Fe(CO)_2[CH_2CH=CH_2]$ produced 185, some reactions of which are given

(182)

(183)

SCHEME 19

SCHEME 20

 $[Fe] \equiv (\pi - C_5H_5)Fe(CO)_2$

in Scheme 19. Representative reactions of a cyclopentenyl complex are outlined in Scheme 20; the triethylamine abstracts a proton stereoselectively, i.e. trans to the Fe—olefin bond. Coupling between $(\pi$ -C₅H₅)Fe(CO)₂CH₂CH=CH₂ and $[(\pi$ -C₅H₅)Fe(CO)₂(C₄H₆)]⁺ is demonstrated in Fig. 15, and an alternative route to 186 is shown in Scheme 21.

Complexes containing Group IVB elements and mercury

Alcoholysis of $(\pi$ -C₅H₅)Fe(CO)₂SiCl₃ by NaOR in ROH afforded [211] $(\pi$ -C₅H₅)Fe(CO)₂[Si(OR)₃] (R = Me, Et, i-Pr, n-Pr, t-Bu), but an excess of OR⁻ caused fission of the Fe—Si bond. The preparation of some organosilyl complexes, $(\pi$ -C₅H₅)Fe(CO)₂SiR₃ (R₃ \equiv Me₂Ph, MePh₂, Ph₃, or Ph₂(CH=CH₂)), including the optically active (-)-[$(\pi$ -C₅H₅)Fe(CO)₂{SiMePh(1-C₁₀H₇)}], and $(\pi$ -C₅H₅)Fe(CO)(PPh₃)(SiPh₃), has been reported [212]. The 1-methylsilacyclobutadiene complex (187), was obtained [213] by treatment of Si(CH₂-CH₂CH₂)MeCl with Na[$(\pi$ -C₅H₅)Fe(CO)₂]; some reactions of 187 are outlined in Scheme 22.

The vinyl-substituted germyl complex, $(\pi - C_5 H_5)Fe(CO)_2[GeMe_2(CH=CH_2)]$ was obtained [214] by attack of $[(\pi - C_5 H_5)Fe(CO)_2]^-$ on GeMe_2(CH=CH_2)X (X = Br or I); and Fe(CO)_3(NO)[GeMe_2(CH=CH_2)] was produced similarly using Na[Fe(CO)_3(NO)]. Photolysis of the cyclopentadienyl complex afforded 188, the proposed mechanism being illustrated in Scheme 23; 188

existed as cis- and trans-isomers with respect to the arrangement of the π -C₅H₅ rings. Photolysis of GeMe₂[Fe(CO)₂(π -C₅H₅)]₂ also gave [215] cis- and trans-188, and similar treatment of $(\pi - C_5 H_5)$ Fe(CO)₂[GeMe₂Cl] afforded cis-[$(\pi - 1)^{-1}$ $C_{s}H_{s}$)Fe(CO)(μ -GeMe₂)]₂.

(188)

Reaction of $[(\pi-C_{S}H_{5})Fe(CO)_{2}]_{2}$ with $O(SnMe_{3})_{2}$ or $N(SnMe_{3})_{3}$ gave

[216] fair yields of $(\pi$ -C₅H₅)Fe(CO)₂(SnMe₃). Reaction of this compound with iodine afforded [217] SnMe₃I and $(\pi$ -C₅H₅)Fe(CO)₂I, while SnMe₂[Fe-(CO)₂(π -C₅H₅)]₂ gave, initially, $(\pi$ -C₅H₅)Fe(CO)₂[SnMe₂I], which subsequently broke down into $(\pi$ -C₅H₅)Fe(CO)₂I and SnMe₂I₂ (SnMe₃I was also formed). A 1/1 mixture of $(\pi$ -C₅H₅)Fe(CO)₂SnMe₃ and HgMeCl in DMSO gave, at first $(\pi$ -C₅H₅)Fe(CO)₂HgMe and SnMe₃Cl. This mixture underwent further exchange reactions forming, eventually, $(\pi$ -C₅H₅)Fe(CO)₂HgCl, Hg[Fe(CO)₂(π -C₅H₅)]₂, SnMe₄ and HgMe₂. Similar products were obtained from SnMe₂[Fe(CO)₂- $(\pi$ -C₅H₅)]₂, but SnMe₃Cl was obtained in secondary reactions; an excess of HgMeCl also produced SnMe₂Cl₂.

Metathetical displacement of Cl⁻ by S_4^{2-} or S_5^{2-} from SnCl₂[Fe(CO)₂-(π -C₅H₅)]₂ afforded [218] 189. Treatment of $[(\pi$ -C₅H₅)Fe{P(OPh)₃}]BF₄ with LiSn₄Me₉ gave [219] (π -C₅H₅)Fe[P(OPh)₃]₂[Sn(SnMe₃)₃], and halogenation of this (1/3 molar ratio) afforded [220] (π -C₅H₅)Fe[P(OPh)₃]₂(SnX₃) (X = Br or I); an excess of halogen produced (π -C₅H₅)Fe[P(OPh)₃]₂X.

The Rh¹ complex 190 (Z = H or BF₂), underwent [221] oxidative addition with $(\pi$ -C₅H₅)Fe(CO)₂(SnCl₃) giving, apparently, an octahedral species having a trans- $(\pi$ -C₅H₅)Fe(CO)₂(Cl₂Sn)Rh¹¹¹Cl arrangement. However, formulation of this as containing a linear Fe—Rh¹¹¹—SnCl₃ system cculd not be dismissed. By heating [$(\pi$ -C₅H₅)Fe(CO)₂]₂ and Mn(CO)₅(SnHPh₂), the trimetallic [(OC)₅Mn(SnPh₂)Fe(CO)₂(π -C₅H₅)] was formed [222]. UV irradiation of a mixture of M(CO)₅(GeHPh₂) (M = Mn or Re) and Fe₂(CO)₄ afforded 191.

Reaction of $(\pi$ -C₅H₅)Fe(CO)₂HgI with HCl, and with Na₂SnO₂, gave [223] $(\pi$ -C₅H₅)Fe(CO)₂Cl and $(\pi$ -C₅H₅)Fe(CO)₂I, and Hg[Fe(CO)₂ $(\pi$ -C₅H₅)]₂, respectively. Treatment of the last with HCl afforded the carbonyl chloride and $(\pi$ -C₅H₅)Fe(CO)₂HgCl.

Complexes containing Group VB donor atoms

The monomeric $(\pi - C_5H_5)Fe(CO)_2[P(CF_3)_2]$ was obtained [224] by reaction of $[(\pi - C_5H_5)Fe(CO)_2]_2$ with $P_2(CF_3)_4$. UV irradiation of this gave trans- $[(\pi - C_5H_5)Fe(CO)_{\{P(CF_3)_2\}}]_2$ while reaction with NO (E = O), S₈ or Se₈ (E = S or Se) afforded $(\pi - C_5H_5)Fe(CO)_2[P(=E)(CF_3)_2]$. Irradiation of the complex where E = O gave $(\pi - C_5H_5)Fe(CO)_2[OP(CF_3)_2]_4$ while similar treatment of those species with E = S or Se afforded $(\pi - C_5H_5)Fe(CO)_2[P(=S)(CF_3)_2]_4$ in the presence of sulfur led to the formation of $(\pi - C_5H_5)Fe(CO)_2[P(=S)(CF_3)_2]$ in the presence of sulfur led to the formation of $(\pi - C_5H_5)Fe(CO)_2[SP(=S)(CF_3)_2]_4$.

Displacement of chloride from $Fe(CO)_4(PMe_2Cl)$, obtained by reaction of $Fe_2(CO)_9$ with $PMe_2(NMe_2)$ followed by treatment with HCl, by $Na[(\pi-C_5H_5)-$

Fe(CO)₂] afforded [225] $(\pi - C_5H_5)Fe(CO)_2(\mu - PMe_2)Fe(CO)_4$. UV irradiation of this gave $(\pi - C_5H_5)Fe(CO)(\mu - PMe_2)(\mu - CO)Fe(CO)_3$ (192), the structure of which has been confirmed crystallographically (Fe—Fe 2.63 Å), while thermolysis (219°) gave $[(\pi - C_5H_5)Fe(CO)_2]_2$ and $[Fe(CO)_3(\mu - PMe_2)]_2$. 192 could also be obtained by treatment of Fe(CO)_4[PMe_2(SiMe_3)] with $(\pi - C_5H_5)Fe(CO)_2Cl$. Chloride displacement from Ni(CO)_3PMe_2Cl by Na[$(\pi - C_5H_5)Fe(CO)_2$] afforded $(\pi - C_5H_5)Fe(CO)_2(\mu - PMe_2)Ni(CO)_3$, while reaction of Fe(CO)_4PMe_2Cl with Na-[Mn(CO)_5] and Na[Re(CO)_5] gave (OC)_4Fe(PMe_2OPMe_2)Fe(CO)_4 and [Re-(CO)_4(\mu - PMe_2)]_2, respectively. Treatment of Cr(CO)_5(AsMe_2Cl) with Na[$(\pi - C_5H_5)Fe(CO)_2$] afforded $(\pi - C_5H_5)Fe(CO)_5$, which decomposed on heating.

Bridged phosphido complexes containing iron and/or ruthenium, $[(\pi - C_5H_5)M(CO)_2(\mu-PPh_2)M'(CO)_2(\pi-C_5H_5)]^*$ (193), could be obtained [226] by addition of $(\pi-C_5H_5)M(CO)_2PPh_2$ (M = Fe or Ru) to $(\pi-C_5H_5)M'(CO)_2Cl$ (M' = Fe or Ru). A mixture of $(\pi-C_5H_5)Ru(CO)_2(\mu-PPh_2)Fe(CO)_4$ and $[(\pi-C_5H_5)-Ru(CO)_2]_2$ was obtained by reaction of $(\pi-C_5H_5)Ru(CO)_2PPh_2$ with Fe₂(CO)₉. $[(\pi-C_5H_5)Fe(CO)_2]_2$ reacted with SbCl₃ in dichloromethane giving [227] $[\{(\pi-C_5H_5)Fe(CO)_2\}_2SbCl_2][Sb_2Cl_7]$ (194), from which PF₆⁻ and Reineckate salts could be obtained; the structure of this compound has been determined [228] crystallographically. A similar cation was produced using SbBr₃, and with Sb(CF₃)₂I, $[\{(\pi-C_5H_5)Fe(CO)_2\}_2Sb(CF_3)_2][Sb(CF_3)_2I_2]$ was formed. $(\pi-C_5H_5)Fe(CO)_2Cl$ reacted [227] with SbCl₃ giving $[\{(\pi-C_5H_5)Fe(CO)_2Cl\}_2-SbCl_3\}_2$, probably 195. With Sb₂(CF₃)₄, $[(\pi-C_5H_5)Fe(CO)_2]_2$ may have re-

(193)

acted to give $(\pi - C_5H_5)Fe(CO)_2[Sb(CF_3)_2]$. The reactions corresponded formally to an insertion of SbX₂⁺ into the Fe—Fe bond of $[(\pi - C_5H_5)Fe(CO)_2]_2$, and complemented the observations [228] that SbX₃ gave, in THF, $(\pi - C_5H_5)$ -Fe(CO)₂SbX₂ and $[(\pi - C_5H_5)Fe(CO)_2]_2$ SbX. Under more rigorous conditions, in refluxing 1,2-dichloroethane, SbX₃ afforded $[\{(\pi - C_5H_5)Fe(CO)_2\}_3$ SbX⁺]_n- [FeX₄^{*n*-}] (X = Cl, *n* = 1; X = Br, *n* = 2); these compounds were also isolated as BPh₄⁻ and Reineckate salts. However, reaction with SbCl₅ afforded [{(π -C₅H₅)Fe(CO)₂]₂(μ -Cl)][SbCl₆]. Treatment of [(π -C₅H₅)Fe(CO)₂]₂ with AsX₃ (X = Cl or Br) gave (π -C₅H₅)Fe(CO)₂AsX₂ and [{(π -C₅H₅)Fe(CO)₂]₂AsX₂]-[FeX₄]. The former could be converted into the latter when X = Cl, and with different reaction stoichiometries, [{(π -C₅H₅)Fe(CO)₂]₃AsCl₂][FeCl₄]₂ was also formed. The last, on recrystallisation from acetone, afforded [{(π -C₅H₅)Fe(CO)₂]₂AsCl₂][FeCl₄]. When X = Br, a species formulated as [(π -C₅H₅)Fe-(CO)₂Br]₃[AsBr₃], perhaps analogous to [{(π -C₅H₅)Fe(CO)₂Cl]SbCl₃]₂, was also isolated. Reaction of BiX₃ (X = Cl, Br or I) with [(π -C₅H₅)Fe(CO)₂]₂ gave only (π -C₅H₅)Fe(CO)₂BiX₂.

Compounds containing sulfur

UV photolysis of $(\pi$ -C₅H₅)Fe(CO)₂(SCF₃) gave [229] isomers of $[(\pi$ -C₅H₅)Fe(CO)(SCF₃)]₂ similar to other known [230] mercaptide complexes of iron. Treatment of [Fe(CO)₃(SCF₃)]₂ with PPh₃ afforded Fe₂(CO)₅(PPh₃)-(SCF₃)₂ and [Fe(CO)₂(PPh₃)(SCF₃)]₂, while CO displacement by NO provided [Fe(NO)₂(SCF₃)]₂. Voltammetric oxidation of $[(\pi$ -C₅H₅)Fe(CO)(SR)]₂ (R = alkyl or aryl) and $[(\pi$ -C₅H₅)Fe(CO)(PPh₂)]₂ occurred [231] in two reversible one-electron steps, giving dimeric mono- and di-cations. The halfwave potentials were dependent on the nature of R, and the oxidations could be achieved chemically. The electron transfer reactions were stereoselective (i.e. $syn-syn^{n_{\tau}} \neq syn-syn^{(n+1)+}$ where syn refers to the geometry of the Fe₂(SR)₂ system). From Mössbauer spectral studies it was established that electrons were removed from a molecular orbital predominantly metallic in character and associated equally with both metals. Oxidation probably led to a contraction of the Fe—Fe bond lengths.

The structures of two SO₂ derivatives of $[(\pi - C_5H_5)Fe(CO)_2]_2$ [232], viz. $[(\pi - C_5H_5)Fe(CO)_2]_2SO_2$ (196) [233], and $(\pi - C_5H_5)_2Fe_2(CO)_3(\mu - SO_2)$ (197) [234]

(197)

(196)

SEt

EtS

(199)

References p. 372

have been determined by X-ray crystallography. In the latter, the Fe–Fe distance is 2.59 Å and the S atom has tetrahedral geometry.

The structure of $[(\pi-C_5H_5)Fe(SEt)S]_2$ (198), obtained [235] in low yield from a refluxing mixture of $[(\pi-C_5H_5)Fe(CO)_2]_2$ and ethyl polysulfide in methylcyclohexane, has been determined. The Fe—S—S—Fe bridge is planar, the Fe—Fe distance is 3.31 Å, and the S—S distance, 2.02 Å, is shorter than that of an S—S single bond (2.10 Å), corresponding to a π -bond order of ca. $\frac{1}{3}$. Of the various formulations representing the Fe₂S₂ interaction, that of Fe²⁺ ·S ····· S⁻ Fe³⁺ was favored. The voltammograms of the compound exhibited one anodic wave, but no cathodic processes were detected. Reaction of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with R₂S₂ gave [236], as expected, $[(\pi-C_5H_5)Fe(CO)-(SR)]_2$ (R = Me, Et, t-Bu or CH₂Ph) and also $(\pi-C_5H_5)_3Fe_3(CO)_2S(SR)$ (199). Cyclic voltammograms of the latter in dimethoxyethane revealed the existence of a mono- and di-cationic species, and iodination of 199 afforded $[(\pi-C_5H_5)_3Fe_3(CO)_2S(SR)]^+$ which rapidly decomposed into $[(\pi-C_5H_5)Fe(CO)-(SR)]_2^+$.

Halide, cyanide and other complexes

UV irradiation ($\lambda > 400 \text{ nm}$) of (π -C₅H₅)Fe(CO)₂X in DMSO or pyridine gave [237] [(π -C₅H₅)Fe(CO)₂]₂, C₅H₆ and X⁻. When $\lambda > 280 \text{ nm}$, dimeric species, e.g. possibly (π -C₅H₅)(CO)Fe(μ -CO)₂Fe(py)(π -C₅H₅), were formed but these could not be isolated. These reactions did not occur in non-polar solvents. Under visible light in pyridine or DMSO, (π -C₅H₅)Fe(CO)LBr afforded [238] [(π -C₅H₅)Fe(CO)₂]₂ when L = P(OPh)₃ and [(π -C₅H₅)Fe(CO)₂-(PPh₃)]Br when L = PPh₃.

Treatment of $(\pi$ -C₅H₅)Fe(CO)₂I with AgBF₄ gave [{ $(\pi$ -C₅H₅)Fe(CO)₂}₂I]-[BF₄] (200), the structure of which has been determined crystallographically

(200)

[239]. The Fe–I–Fe bond angle was 110.8° and the Fe–Fe separation 4.26 Å (i.e. there was no metal–metal bond).

Reaction of Fe(diphos)₂Cl₂ with TlC₅H₅ gave (π -C₅H₅)Fe(diphos)Cl, some reactions of which are shown in Scheme 24, and ferrocene; ⁵⁷Fe and ¹¹⁹Sn Mössbauer spectral data were obtained from some of these compounds [240].

The change in asymmetric CO stretching frequencies which occurred [241] upon coordination of a Lewis acid to $(\pi$ -C₅H₅)Fe(CO)₂CN (giving $(\pi$ -C₅H₅)Fe(CO)₂CNL) provided a convenient measure of the electron-pair acceptor strength of the Lewis acid. Thus, the acceptor properties increased in the order L = BH₃ < BF₃ < BCl₃ \approx BBr₃, but decreased in the order L = BCl₃ > GaCl₃ > AlCl₃ and AlMe₃ > BMe₃ \approx GaMe₃.

SCHEME 25

$$Fe(CO)_{4}I_{2} + B/EI_{2}O \xrightarrow{B5*/_{4}} [(\pi - C_{5}H_{5})Fe(CO)_{2}]_{2} + A/EI_{2}O \xrightarrow{G*/_{4}} (\pi - C_{5}H_{5})Fe(CO)_{2}X \xrightarrow{15*/_{4}} [(\pi - C_{5}H_{5})Fe(CO)_{2}]_{2} + A/EI_{2}O \xrightarrow{G*/_{4}} (\pi - C_{5}H_{5})Fe(CO)_{2}X \xrightarrow{15*/_{4}} [(\pi - C_{5}H_{5})Fe(CO)_{2}]_{2} + A/EI_{2}O \xrightarrow{G*/_{4}} (\pi - C_{5}H_{5})Fe(CO)_{2}SnMe_{3} \xrightarrow{(\pi - C_{5}H_{5})Fe(CO)_{2}CI + A/dioxane (\pi - C_{5}H_{5})Fe(CO)_{4}I_{2} + A/EI_{2}O \xrightarrow{28*/_{4}} (\pi - C_{5}H_{5})Fe(CO)_{2}X \xrightarrow{B1*/_{4}} Fe(CO)_{4}I_{2} + A/EI_{2}O$$

$$\begin{bmatrix} Ru(CO)_{3}CI_{2} \end{bmatrix}_{2}^{2} + B/MeCN \\ 30^{*/e} \\ \begin{bmatrix} (\pi - C_{5}H_{5})Ru(CO)_{2} \end{bmatrix}_{2} \\ 30^{*/e} \\ (\pi - C_{3}H_{5})Ru(CO)_{3}Er + B/THF \\ (\pi - C_{3}H_{5})Ru(CO)_{3}Er + B/THF \\ 2^{*/e} \\ 20^{*/e} \\ (\pi - C_{5}H_{5})Ru(CO)_{5}EnMe_{3} \\ 20^{*/e} \\ (\pi - C_{5}H_{5})Ru(CO)(\pi - C_{3}H_{5}) \\ 2^{*/e} \\ (\pi - C_{3}H_{5})Ru(CO)_{2}CI \\ 5^{*/e} \\ (\pi - C_{3}H_{5})Ru(CO)_{2}CI \\ [Ru(CO)_{3}CI_{2} \end{bmatrix}_{2}^{2} + A/THF \\ \begin{bmatrix} Ru(CO)_{3}CI_{2} \end{bmatrix}_{2}^{2} + A/THF \\ 5^{*/e} \\ (\pi - C_{3}H_{5})Ru(CO)_{2}CI \\ (\pi - C_{3}H_{5})Ru(CO)_{2}CI \\ (\pi - C_{3}H_{5})Ru(CO)_{2}CI \\ \begin{bmatrix} Ru(CO)_{3}CI_{2} \end{bmatrix}_{2}^{2} + A/THF \\ \hline \\ 10^{*/e} \\ (\pi - C_{3}H_{5})Ru(CO)_{2}CI \\ \hline \\ 10^{*/e} \\ (\pi - C_{3}H_{5})Ru(CO)_{2} \\ \hline \\ \end{bmatrix}$$

A = $Sn(C_3H_5)Me_3$, B = $Sn(C_5H_5)Me_3$; C = $Sn(C_9H_7)Me_3$ (approx. yields in %)

*This compound is not produced

References p. 372

 π -Cyclopentadienyl, π -allyl and other carbonyl halides reacted [242] with Sn(C₃H₅)Me₃ and Sn(C₅H₅)Me₃ affording a series of complexes (Scheme 25). Treatment of Fe(CO)₄I₂, and of $(\pi$ -C₃H₅)Ru(CO)₃Br, with Sn(C₉H₇)Me₃ gave $(\pi$ -C₉H₇)Fe(CO)₂I (28%) and $(\pi$ -C₉H₇)Ru(CO) $(\pi$ -C₃H₅) (77%), respectively. Ru(CO)₄(SiMe₃)I was converted by Sn(C₅H₅)Me₃ into $(\pi$ -C₃H₅)Ru-(CO)₂(SiMe₃) (49%).

Metallo-borane and -carborane cluster compounds

From X-ray crystallographic studies [243] of $(B_3C_2H_7)Fe(CO)_3$ (201) [244], it was established that the carborane skeleton formed a planar ring. Treatment of $(\pi$ -C₅H₅)Fe(CO)₂I with NaB₄C₂H₇ gave [245] B₄C₂H₇[μ -Fe-(CO)₂(π -C₅H₅)] (202), which, on photolysis afforded (π -C₅H₅)FeH(π -2,3-B₄C₂H₆) (203) and (π -C₅H₅)Fe(π -2,3-B₄C₂H₆). The former, an Fe¹¹ derivative,

could be converted into the latter (a derivative of Fe¹¹¹ with a structure similar to that of 203 without the hydride), and vice versa, in a combination of acid—base and redox reactions. Reduction of 203 with NaH, or of $(\pi$ -C₅H₅)-Fe $(\pi$ -2,3-B₄C₂H₆) with sodium amalgam, afforded $[(\pi$ -C₅H₅)Fe $(\pi$ -2,3-B₄C₂H₆)] Treatment of this anion with HCl caused regeneration of 203, but oxidation with air caused reformation of $(\pi$ -C₅H₅)Fe $(\pi$ -2,3-B₄C₂H₆). Reduction of 2,4-B₅C₂H₇ with sodium naphthalenide in the presence of FeCl₂, NaC₅H₅ and oxygen gave 204 as the major product, together with traces of the 2,4-isomer of 203, viz. $(\pi$ -C₅H₅)FeH(6-R- π -2,4-B₄C₂H₅) (R = C₁₀H₇ or H), and its oxidised counterpart, $(\pi$ -C₅H₅)Fe(6-R- π -2,4-B₄C₂H₅). Reduction of 204 by sodium amalgam, followed by addition of HCl, gave 205 and the 2,4-isomer of 203, 206. From the gas phase reaction of 2,3-B₄C₂H₈ with Fe(CO)₅

(206) (H atoms omitted for clarity)

at 215°, $(\pi - 2, 3 - B_4C_2H_6)Fe(CO)_3$ (207), and $(\pi - 2, 3 - B_3C_2H_7)Fe(CO)_3$ (201), were obtained; thermolysis of 207 gave 201.

Treatment of $(\pi$ -C₅H₅)Co(B₇C₂H₉) (a Co^{III} complex), which had been reduced by sodium naphthalenide, with NaC₅H₅ and FeCl₂, resulted [246] in the formation of $(\pi$ -C₅H₅)Co^{III}[B₇C₂H₉Fe^{III}(π -C₅H₅)] (208), which may be reduced to an anion by BH₄⁻ in acetonitrile. Reduction of $(\pi$ -C₅H₅)Co^{III}(B₁₀C₂H₁₂) by ethanolic KOH in the presence of FeCl₂ and C₅H₆ afforded $(\pi$ -C₅H₅)Co^{III}[B₉C₂H₁₁Fe^{III}- $(\pi$ -C₅H₅)] (209). Reduction of 209 with borohydride afforded the corresponding Fe^{II}-containing anion. Photochemical reaction of the K' salt of the isomers 7,8- or 7,9-[B₉H₁₀CHP]⁻ with Fe(CO)₅ afforded [247] [Fe(CO)₄{7,8-B₉H₁₀-CHP}]⁻. The iron atom had a trigonal bipyramidal geometry with axially bound phosphacarborane, the latter being σ -bonded to the Fe(CO)₄ group via the P atom.

In a polyhedral expansion reaction, reduction of $1,7-B_6C_2H_8$ with sodium, followed by addition of NaC₅H₅ and FeCl₂, led [248] to the formation of $(\pi-C_5H_5)Fe(\pi-2,3-B_3C_2H_{10})$ (210), which could be reduced to a monoanion. Reaction of $1,7-B_6C_2H_8$ with sodium naphthalenide, FeCl₂ and NaC₅H₅ afforded isomers of $(\pi-C_5H_5)Fe(\pi-B_6C_2H_8)$ (211 and 212). A mixture of $[B_9C_2H_{12}]^-$, FeCl₂ and $[C_5H_5]^-$ gave [249] $(\pi-C_5H_5)Fe(\pi-B_9C_2H_{11})$ (213) and a similar mixture involving $[B_{10}C_2H_{12}]^2^-$ afforded [250] $[(\pi-C_5H_5)Fe(\pi-B_{10}C_2H_{12})]^-$. The latter anion could be oxidised to its neutral, paramagnetic Fe^{III} counterpart. Reaction of two moles of $[B_{10}C_2H_{12}]^{2^-}$ with FeCl₂ gave the dianion $[Fe(\pi-B_{10}C_2-H_{12})_2]^2^-$, which could be oxidised, voltammetrically, in a one-electron step to the corresponding monoanion.

(Hatoms omitted for clarity)

(208)

(Hatoms omitted for clarity)

(209)

(Hatoms omitted for clarity)

(211)

(H atoms omitted for clarity)

(212)

(Hatoms omitted for clarity)

(213)

Cyclobutadiene, trimethylenemethane and arene complexes

Cyclobutadienemetal compounds

Pressurisation of acetylene-saturated THF solutions of $Fe(CO)_{s}$ gave [251] $(\pi - C_4 H_4)$ Fe(CO)₃ and the metallocyclopentadienyl compound 214 in low yield, together with γ -butyrolactone, quinhydrone and polymeric material.

Transannular cyclisation occurred when the diacetylene 215 reacted [252] with $Fe(CO)_5$ or $Fe_3(CO)_{12}$. The products were the substituted cyclobutadiene compounds, 216 (m = 4, n = 4, 5 or 6; m = 5, n = 5 or 6), metallocyclopentadienyl species, 217 (m = 4, n = 4) the structure of which has been confirmed [360] (Fe–Fe distance 2.46 Å) or π -cyclopentadienyl dimers (218) (m = 4, n = 4, 5 or possibly 6). A possible mechanistic pathway is outlined in Scheme 26. Also produced in these reactions were $Fe_2(CO)_6$ -

SCHEME 26

 $(C_{13}H_{18})_2$, perhaps 219 (m = 4, n = 5), and Fe₂(CO)₆($C_{13}H_{18}$)₃ (220) (m = 4, n = 5). The π -cyclopentadienyl complex 218, reacted with iodine giving $(\pi$ -Q)Fe(CO)₂I (π -Q = substituted π -cyclopentadienyl ring), and cleavage with sodium amalgam afforded Na[$(\pi$ -Q)Fe(CO)₂]. The latter reacted with C₆F₆ and SnPh₃Cl giving $(\pi$ -Q)Fe(CO)₂C₆F₅ and $(\pi$ -Q)Fe(CO)₂SnPh₃, respectively.

Reaction of 221 ($R = Me, F, Cl, Br, OMe, or NMe_2$) with Fe₂(CO)₉ afforded [253] the substituted π -cyclobutadiene complex 222. There was no conjugative interaction between the π -electrons of the C₆ and C₄ rings. Dechlorination of 223 by Fe₂(CO)₉ afforded [254] 224.

Photolysis of krypton-matrix-isolated $(\pi$ -C₄H₄)Fe(CO)₃ gave [255], at 8 K, $(\pi$ -C₄H₄)Fe(CO)₂, which, on warming to 35 K, recombined with the CO. Reaction of $(\pi$ -C₄R₄)Fe(CO)₃ (R = H, Me or Ph) with NOPF₆ afforded [256] $[(\pi$ -C₄R₄)Fe(CO)₂(NO)][PF₆]. Treatment of this with the appropriate Lewis bases afforded $[(\pi$ -C₄R₄)Fe(CO)(NO)L]⁺ (L = PPh₃, AsPh₃ or SbPh₃) and $[(\pi$ -C₄R₄)Fe(NO){P(OPh)₃}²]⁺.

Acylation of $(\pi$ -C₄H₄)Fe(CO)₃ afforded [257] $(\pi$ -C₄H₃COMe)Fe(CO)₃ (or RCOMe where $R = \pi$ -C₄H₃Fe(CO)₃). Reductive dimerisation of this acyl produced RC(OH)Me · C(OH)MeR which could be dehydrated to H₂C=CR= CR=CH₂, or underwent the pinacol rearrangement giving R₂CMe(COMe). Attack by base on RCOMe gave RC(Me)=CHCOR, while reduction by B₂H₄ afforded REt. Acetylation of this ethyl complex led to 225 (45%) and 226

(55%). Condensation of *p*-toluidine with RCOPh in the presence of alumina afforded [258] $RC(=NC_6H_4Me)Ph$, which was isolated as syn- and anti-isomers.

Reaction of 227 with Na₂[Fe(CO)₄] gave [259] 228. This compound underwent a series of reactions outlined in Scheme 27. The aminomethyl complex was resolved into its diastereoisomers using (+)-camphor-10-sulfonic acid, and 229 was also obtained as a diastereomeric pair. The 'H NMR spectrum of 229 indicated that less than 5% of racemisation occurred at 120° after 48 h. This contrasted with the behaviour of 5-formyl-2,4-pentadienoateiron tricarbonyl, the racemisation of which had $t_{\frac{1}{2}} = 46.5$ h at ca. 120°. These results indicated that cyclobutadiene, or its derivatives, must be completely removed from the metal before racemisation can occur. Related to this point is the mechanism of reaction of $(\pi$ -C₄H₄)Fe(CO)₃ with dienophiles in the presence of Ce⁴⁺. Various schemes have already been discounted [260], but one pro-

References p. 372

posal seems acceptable (Scheme 28). Thus 228 reacted [261] with TCNE, benzoquinone or N-phenylmaleimide in the presence of Ce⁴⁺ giving the products as shown in Scheme 29. The major product, as shown, was racemic. Reaction of (--)-[$(\pi$ -2,3-C₄H₂MeEt)Fe(CO)₃] with MeO₂CCH=CHCO₂Me or TCNE in the presence of Ce⁴⁺ also afforded [262] racemic products, and these data indicated that greater than 95% of the cyclobutadiene ligand had to react with the dienophile after the ligand had attained a plane of symmetry. Therefore, the metal could not be close enough to the ligand, e.g. as in 230 to alter its symmetry from that of the free ligand, and so could exert little influence on the electronic state, or reactivity, of the ligand.

Trimethylenemethane complexes

Reaction of 2,2-dimethylallylidene cyclopropane with $Fe_2(CO)_9$ afforded [263] 231, and the isomers 232 and 233; a mechanism for the formation of 234 and 235 is outlined in Scheme 30. Ring opening of Feist's ester by $Fe_2(CO)_9$

(Scheme 31) appeared [264] to be completely stereospecific and to occur in a disrotatory fashion; such a reaction with analogous cyclobutenes were unsuccessful. The structure of a trimethylenemethane species 235, derived [265] from a heptafulvene ring, has been determined [266] crystallographically; the Fe—C distance to the central, and to the peripheral C atoms are 1.95 and 2.12, 2.18 and 2.19 Å, respectively.

Arene complexes

Reduction, by sodium amalgam at -5 to -40° C, of $[(\pi-C_5H_5)Fe(\pi-C_6H_6)]^*$ gave [267] its neutral, paramagnetic counterpart. In the presence of polar solvents, exchange of the π -C₆H₆ ring by other ligands, viz. C₅H₅, other arenes, CO or P(OPh)₃, could be effected, thereby giving $(\pi-C_5H_5)_2Fe$, $(\pi-C_5H_5)Fe$ -(arene), $[(\pi-C_5H_5)Fe(CO)_2]_2$ or even $[(\pi-C_5H_5)Fe\{P(OPh)_3\}_2]_2$. Among the arene species so obtained were $(\pi-C_5H_5)Fe(\pi-C_{10}H_8)$ and $(\pi-C_5H_5)Fe(\pi-C_6H_3Me_3)$, isolated as the more stable monocations.

Iron vapour, PF₃ and benzene condensed [268] at -196° to give (π -C₆H₆)Fe(PF₃)₂, whose volatility was similar to that of (π -C₆H₆)Cr(PF₃)₃. Reaction of the iron compound with CO (1 atm) gave Fe(CO)₃(PF₃)₂.

Treatment of $[(\pi-C_6H_6)RuCl_2]_2$ with $[BY(pyz)_3]^-$ (pyz = 1-pyrazolyl; Y = H or pyz) gave $[(\pi-C_6H_6)Ru\{BY(pyz)_3\}]^+$ isolated as the PF₆⁻ salt. The crystal structure of the species with Y = pyz was determined [270], establishing the pseudo-octahedral geometry of the Ru^{II} atom, and that the $[B(pyz)_4]^$ ligand was tridentate. Reaction of $[(\pi-C_6H_6)RuCl_2]_2$ with CH(pyz)₃ afforded $[(\pi-C_6H_6)Ru\{CH(pyz)_3\}]^{2+}$ [269]. Addition of H⁻ to the tripyrazolylborate gave the fluxional π -cyclohexadienyl complex $(\pi-C_6H_7)Ru[BH(pyz)_3]$.

Allyl and dienyl complexes

Monoallyl species

Addition of finely divided Yb, Sm, Y or Mn to THF solutions containing $(\pi$ -C₃H₅)Fe(CO)₃I afforded [271] an air-sensitive mauve solution which appeared to contain an equilibrium mixture of $(\pi$ -C₃H₅)Fe(CO)₃ and $[(\pi$ -C₃H₅)-Fe(CO)₃]₂. Treatment of this mixture with *p*-MeC₆H₄SO₂N(NO)Me gave $(\pi$ -C₃H₅)Fe(CO)₂(NO) (55% yield), but there was no reaction with PPh₃ (thereby

eliminating, probably, the existence of an Fe–I bond, since $(\pi - C_3H_5)Fe(CO)_2$ -(PPh₃)I was not isolated). Similar treatment of $(\pi - C_5H_5)Fe(CO)_2X$ (X = Cl or Br) with Yb or Sm gave only $[(\pi - C_5H_5)Fe(CO)_2]_2$.

Reaction of $(\pi$ -C₃H₅)Fe(CO)₃I with Me₃SnS₂CNMe₂ gave [272] two isomers of $(\pi$ -C₃H₅)Fe(CO)₂(S₂CNMe₂) (236 and 237). The known [273] Fe(CO)₂-(S₂CNMe₂)₂ could also be obtained from this reaction, although Fe(CO)₃I-(S₂CNMe₂) could be conveniently prepared via Fe(CO)₄I₂. Treatment of $(\pi$ -C₅H₅)Fe(CO)₂Cl with Me₃SnS₂CNMe₂ gave the known [275] $(\pi$ -C₅H₅)Fe(CO)-(S₂CNMe₂).

UV irradiation of Fe(PF₃)₅ with C₃H₅X (X = Br or I) gave [274] (π -C₃H₅)Fe(PF₃)₂X, but when X = Cl, the 1,3-hexadiene complex, (C₄H₅Et)Fe(PF₃)₃ was produced.

From an X-ray crystallographic study of $(\pi$ -C₃H₅)Fe(CO)₂(PPh₃)I it was established [275] that the metal atom had a quasi-octahedral geometry. ¹³C

NMR spectral studies of $(\pi - C_3 H_5)Fe(CO)_3I$ confirmed [276] the existence of two isomers [277] determined by the orientation of the allyl group. A complete vibrational spectral analysis, in the liquid and solid phases, has been made [278] of $(\pi - C_3 X_5)Fe(CO)_2(NO)$ (X = H or D).

Treatment of $(C_1H_o)Fe(CO)_3$ with HBF₄ or CF₃CO₂H in the presence of CO afforded [279] the tetracarbonyl cation 238. The simpler complex, $[(\pi - C_3H_5)Fe(CO)_4]^*$ could be obtained by treating $(\pi - C_3H_5)Fe(CO)_3Cl$ with AgBF₄ in the presence of CO. These cationic species were susceptible to nucleophilic attack leading, in some cases, to the release of olefins (e.g. MeCOCH₂CO₂Me gave H₂C=CHCH₂CH(CO₂Me)COMe). However, treatment of $[(\pi - C_3H_5)Fe(CO)_4]^*$ with PPh₃ or pyridine (L) gave $[(H_2C=CHCH_2L)Fe(CO)_4]^*$. When there was a choice between the formation of a *cis* or *trans* double bond in the olefin so formed, *cis*-geometry was favored (e.g. Scheme 32). Stereospecifically labelled

SCHEME 32

species could be prepared using CF_3CO_2D , viz. Scheme 33, and it was shown that nucleophilic attack occurred preferentially at the unsubstituted terminal π -allyl C atom.

Hexafluoroacetone added [280] to $(2,3-C_1H_1Me_2)Fe(CO)_3$ and $(2-C_1H_5Me)-Fe(CO)_3$ under UV irradiation, giving 239 and 240. The latter underwent a rearrangement at 80°, probably involving insertion of $(CF_3)_2CO$ into a CH bond, giving 241 and 242. Similar photolysis of $(\pi-C_4Me_4)Fe(CO)_3$ with $CF_2=CFH$ afforded [281] 243 and 244. Carbonylation of the latter at 80° gave 245, but when heated in hexane, 244 produced $[(\pi-C_5H_4CF_3)Fe(CO)_2]_2$. It was suggested that this dimer could have been formed via a route involving the migration of

hydride from the CF₃CH group to the metal atom, with concomitant ring enlargement via a 1,2-shift, giving $(\pi \cdot C_3H_4CF_3)Fe(CO)_2H$.

The catalytic isomerisation by $Fe_3(CO)_{12}$ of the ethylpentene 246, gave [282] 247 in which the deuterium label had been randomly distributed in all the methyl groups. It was found that the scrambling of D into the methyl groups and terminal vinylic positions of recovered 246 occurred almost twice as fast as isomerisation. The absence of crossover products from the isomerisation of a mixture of 246 and Me₂CHCH=CH₂ indicated that olefin isomerisation occurred via an intramolecular hydride shift. No primary deuterium effect was observed when a mixture of 246 and its undeuterated analog were isomerised and so it was suggested that a π -allyl iron hydride was involved as a reaction intermediate. The proposed mechanism, which does not involve an addition/elimination of Fe—H, is outlined in Scheme 34.

SCHEME 34

Bis-allyl complexes

The structure of $(\pi$ -C₃H₄Me)₂Ru[P(OMe)₃]₂ (248) [283] has been determined crystallographically [284]. The bonding of the methallyl groups is asymmetric, the mean Ru—C (*trans* to P) and Ru—C (*trans* to C) bond lengths being 2.38 and 2.18 Å, respectively. The methallyl groups are also non-planar, the methyl group being bent out of the plane of the allyl fragment by ca. 12°.

Monomeric allyl species derived from cyclic olefins

The kinetics of the reaction of the cyclooctadienyl complex 249, to give $(C_8H_{12})Fe(CO)_2L$, and then the transannular ketone 250 and $Fe(CO)_2L_3$ (L =

Lewis base nucleophile) have been studied [285]. Under pseudo-first order conditions with poor nucleophiles (PPh₃ or P(OPh)₃), substitution of the CO groups *trans* to the Fe—C σ -bond occurred probably via a CO dissociative pathway. The limiting reaction rate was independent of the nature of L, but the reaction was inhibited by CO. There was no evidence of further reaction of the substituted organometallic to give the ketone 250. With stronger nucleophiles, e.g. alkyl phosphines or phosphites, the reaction occurred by two paths, one giving the substituted organoiron species, and the other 250; CO reacted only very slowly with the organoiron species to give the transannular ketone. It seemed likely that a CO group bound to the metal inserted into the Fe—C bond to give 250.

Treatment of bicyclo[3.1.0] hex-2-ene with Fe₂(CO)₉ gave [286] 251 and 252 which could be decarbonylated (reversibly) at 130° to give 253 and hence its isomer $(1,3-C_bH_8)Fe(CO)_3$. Bicyclo[4.1.0] hept-2-ene reacted similarly to give 254 which also decarbonylated (reversibly) to form 255 and so 251. The last two could also be produced by BH₄⁻ reduction of 257.

References p. 372

The complex $[(C_8H_9)Fe(CO)_3]^*$, represented as an equilibrium between 258 and 259, was reduced [287] by H⁻ giving a mixture of 260 (derived from 258) and 261 (derived from 262). Both of these compounds were fluxional (Fig. 16) and the latter underwent (reversible) carbonylation to give 262. Treat ment of 263 (X = CH₂, CH=CH or o-C₆H₄) with aqueous CN⁻ gave [288] 264. With I⁻ however, 263 afforded 265 which, on treatment with LiMe gave the corresponding metal methyl complex. It was proposed that the lack of conjugation between the unsaturated moieties in 264 was essential for its conversion with CN⁻ into a π -allylmetal species also containing a Fe—C σ -bond.

CN X Fe (CO)₃

(263)

(267)

(265)

(268)

(266)

Reaction of $(C_7H_8)Fe(CO)_3$ $(C_7H_8 = cycloheptatriene)$ with TCNE afforded [289] 266, whose structure has already been established [290]. With

Fig. 18.

 $(CF_3)_2CO$ and $(CF_3)_2C=C(CN)_2$, 267 and 268 were also produced. With $(CF_3)_2(NC)C=C(CN)(CF_3)$, however, three isomers were formed (Fig. 17.). These reactions involved 1,3-addition of the electrophilic olefin to the coordinated cycloheptatriene (Fig. 18). Reaction of $(C_8H_7R)Fe(CO)_3$ (R = H, Me, Br, Ph or CPh₃) with TCNE gave 269.

(269)

Di- and tri-metallic allyl complexes

Reaction of diphenyldiazomethane with 270 under UV light gave [291] 271, the structure of which was determined crystallographically. The Fe–Fe distance was 2.62 Å and the O \rightarrow Fe distance 2.07 Å.

The structure and temperature-dependent ¹H NMR spectrum of the Fe₂-(CO)₆ adduct of bicyclo[6.2.0] deca-1,3,5-triene (272) has been investigated [292]. The bonding was similar to that encountered [293] in $(C_8H_{10})Fe_2$ -

 $(CO)_{6}$ and $(C_{8}H_{8})Ru_{2}(CO)_{6}$, and while the low temperature (-130°C) NMR spectrum was consistent with the solid state structure (Fe—Fe distance 2.79 Å), that at -70°C indicated a time-averaged plane of symmetry for the system resulting from the fluxionality of the molecule.

While the preparation of 273, from hexadiene and $Ru_3(CO)_{12}$, has been reported previously [294], it may also be produced [295] from 1,3-cyclo-

hexadiene (4 mol) and $Ru_3(CO)_{12}$ (1 mol) in refluxing heptane. The reaction involved the catalytic cleavage of an unstrained C—C σ -bond. With a large excess of cyclohexadiene, 273 afforded (1,3-C₆H₈)Ru(CO)₃ which is an active catalyst for inter- and intra-molecular hydrogen transfer reactions. (1,4-C₆H₈)- $Ru(CO)_3$ reacted with 1,3-C₆H₈ giving 1,4-C₆H₈, benzene, cyclohexene and 274. However, no 273 was obtained upon decomposition of (1,3-C₆H₈)Ru(CO)₃.

While cis-1,3,5-hexatriene cyclised in the presence of $Ru_3(CO)_{12}$ in refluxing heptane to give modest yields of benzene (42%), the *trans*-isomer afforded extremely low yields (1.2%).

Azulene reacted with $Ru_3(CO)_{12}$ giving [296], inter alia, $(C_{10}H_8)Ru_3(CO)_7$ the structure of which (275) has been determined crystallographically. The three metal atoms form an isoceles triangle (Ru(1)-Ru(2) = Ru(1)-Ru(3) = 2.94-2.95; Ru(2)-Ru(3) = 2.94 Å); Ru(2) and Ru(3) lie below the 7-membered ring and the bonding could be regarded as in Fig. 19.

Dienyl complexes

The cyclohexadienyl complexes 276 (R = H or Me) underwent [297] H/D exchange at the methyl groups in dilute deutero acids, as well as D_2O . The proposed mechanisms are outlined in Scheme 35, and the lower path was

SCHEME 35

favored. Compounds containing exocyclic methylene groups could be synthesised by proton abstraction using $NH_2(t-Bu)$. Consequently, it was expected, and observed that, in 276 (R = H), H/D exchange occurred exclusively at the methyl groups in the 2 and 6 positions.

Addition of PPh₃ to the dienyl species 277 (n = 1 or 2) gave [298] the ring-bonded phosphonium derivative 278. Attempts to abstract a proton from 278 (n = 2) using NEt₃ or 1,8-dimethylaminonaphthalene were unsuc-

cessful. Addition of I⁻ to these dienyl cations afforded $(\pi$ -dienyl)Fe(CO)₂I, and treatment of these with Ag⁺ in the presence of PPh₃ gave the metal-bound phosphine cations $[(\pi$ -dienyl)Fe(CO)₂(PPh₃)]⁺.

The formation of C—C bonds was achieved [299] by treating $[(\pi-C_6H_7)-Fe(CO)_3]^*$ with indole, methylindole, pyrrole, furan, thiophen, imidazole or even ferrocene (YH). The products were neutral diene complexes, $(C_6H_7Y)Fe(CO)_3$. Treatment of cyclohexadienyl complexes with β -diketones or β -ketoesters, followed by oxidation of the product of these reactions by MnO₂, afforded [300] dihydrofuran—iron carbonyl complexes (Scheme 36).

SCHEME 36

Reaction of cycloheptatriene with $Ru_3(CO)_{12}$ afforded [301] (C_7H_{10}) -Ru(CO)₃ (a derivative of cycloheptadiene), $(C_7H_8)Ru(CO)_3$, $(C_7H_8)Ru(CO)_2$, $(C_7H_8)Ru_2(CO)_6$ (all in low yield) and $(C_7H_9)(C_7H_7)Ru_3(CO)_6$ (279) (in high yield). The structure of 279 has been determined crystallographically; the three ruthenium atoms formed a nearly equilateral triangle (Ru-Ru 2.84-2.86 Å), and there was an asymmetrically bridging CO group. Reaction of 279 with I_2 or CX₄ (X = Cl or Br) afforded the fluxional 280 and 281.

Pentalenyl complexes

In refluxing octane or heptane, cis-Ru(CO)₄(GeMe₃)₂ converted [302] C₈H₈ into a metal-stabilised pentalenyl complex 282, the structure of which was confirmed crystallographically. The bonding and configuration of the pentalene ring is illustrated in Fig. 20; the Ru–Ru distance is 3.05 Å and the

dihedral angle between the two ring planes is 171° . When the reaction was carried out in refluxing hexane, the fluxional $(C_8H_8)Ru(CO)_2(GeMe_3)_2$ was produced. Pentalene and its 1,3-dimethyl dimer reacted [303] with Fe₂(CO)₃ in methylcyclohexane under CO at 50° giving pentalenyl derivatives, e.g. 283, in low yield.

Olefin complexes

Mono-olefinic compounds

Irradiation of $Fe_2(CO)_9$ with Q (Q = cis- or trans-RCH=CHR'; R, R' = F, Cl, Br or I; CH₂=CHBr or CH₂=CCl₂; acrylonitrile, methylmethacrylate, methyl-trans-croconate, EtOCH=CH₂, acenaphthalene, methylfumarate and dimethylmaleate) led to the formation [304] of QFe(CO)₄ in which Q occupied an equatorial position in the molecular trigonal bipyramid.

A gas phase electron diffraction study of $(C_2F_4)Fe(CO)_4$ revealed [305]

that the molecule had a distorted octahedral structure (284). The C_2F_4 group resembled a fragment of perfluoropropane rather than $F_2C=CF_2$; the Fe—C (CF₂) bond length is 1.99 Å, and the coordinated C—C distance 1.53 Å (ca. 1.34 Å in the free olefin). Thus the compound could be described as a derivative of Fe^{II}.

Reaction of thiacyclobutene-1,1-dioxide with Fe₂(CO)₉ gave [306] 285 which, on pyrolysis, afforded Fe₃(CO)₉S₂. Treatment of Feist's anhydride with Fe₂(CO)₉ gave [307] 286 and 287. Reaction of $(HC_2=CHCO_2H)Fe(CO)_4$ with weak Lewis bases and PCl₃ occurred [308] at the carboxylic group (Scheme 37). The pK_a value for the free acid was 4.10 while that for the complexed

SCHEME 37

$$R = H$$
, cyclo-C₅H₁₀, cyclo-C₄H₈

species was 5.16, revealing the net electron-withdrawing effect of the $Fe(CO)_4$ group. With stronger Lewis bases L (tertiary phosphines, phosphites or pyridine), $(H_2C=CHCO_2H)Fe(CO)_4L$ was formed, probably involving a hydrogen bond between the carboxylate group and L, i.e. $(OC)_4Fe(H_2C=CHCO_2 \cdots H \cdots L)$.

UV irradiation of $Fe(PF_3)_5$ in the presence of trans-RHC=CHR' (R = CN, R' = H or Me; R = H, R' = Ph or CO₂Me) afforded [309] trans-(RHC=CHR')-Fe(PF₃)₄. Similar treatment with R''HC=CR'COR gave 288 (R = OMe, R' = Me, R'' = H; R = R' = H, R'' = Me; R = Me, R' = R'' = H).

Non-conjugated diene complexes

Protonation of the norbornadiene complex $(C_7H_8)Fe(CO)_3$ with HSO₃F gave [310] $[(C_7H_8)Fe(CO)_3H]^+$ (the deuteride was obtained using D₂SO₄) which

did not undergo H/D exchange. Reaction with Cl₂HCCOMe and TiCl₄ in dichloromethane led to the formation of the aldehyde, $(C_7H_7CHO)Fe(CO)_3$ which could be reduced to $(C_7H_7Me)Fe(CO)_3$, also obtainable by reduction of $(C_7H_7CO_2Me)Fe(CO)_3$. Acylation could not be successfully achieved, but the formation of the aldehyde indicated perhaps the existence of intermediary homoallylic ions, e.g. 289.

Semibullvalene reacted [311] with $Fe_2(CO)_9$ giving four complexes, 290, 291, 292 and 293. The last was derived by skeletal rearrangement of 292 (Scheme 38).

SCHEME 38

Treatment of $[(C_7H_8)Ru(CO)Cl_2]_n$ with X⁻ (X = Cl or Br) gave [312] [(C₇H₈)Ru(CO)X₃]⁻ (294), but reaction with [Ph₄As][HCl₂] afforded only [Ph₄As]₂[Ru(CO)₂Cl₄]. Ru(CO)L₂Cl₃ was produced [313] on treatment of 294 (X = Cl) when L = Me₂S, Me₂SO or acrylonitrile; it was also formed, together with (C₇H₈)Ru(CO)LCl₂ (295), when L = AsPh₃, SbPh₃ or pyridine. With an excess of SbPh₃, only Ru(CO)(SbPh₃)₃Cl₂ was formed. With PPh₃ (1/2 molar ratio), [Ru(CO)(PPh₃)₂Cl₂]₂ was obtained, while an excess of the phosphine afforded Ru(CO)(PPh₃)₃Cl₂. Reaction with PPhMe₂ led to the for-

(295)

(296)

mation of $(C_7H_8)Ru(PPhMe_2)_2Cl_2$ (296), while with bipyridyl or *o*-phenanthroline (N-N) in various reaction stoichiometries, $[Ru(CO)(N-N)Cl_3]^{\dagger}$, $[Ru(CO)(N-N)Cl_2]_2$ or $[Ru(CO)(N-N)_2Cl]Cl$ were formed.

Some ligand displacement reactions [314] of 1,5-cyclooctadienetricarbonylruthenium are summarised in Scheme 39. Reaction of this compound

SCHEME 39

with benzylideneacetone afforded [315] 297, the structure of which was determined crystallographically. Ru(1) has an approximately octahedral geometry while Ru(2) is approximately trigonal bipyramidal with distortions towards an octahedron. The Ru-Ru distance, 2.86 Å, is identical to that in $(C_8H_8)Ru_2(CO)_6$ [316], and the Ru-H distances are set at 1.85 (Ru(1)) and 164 Å (Ru(2)); the Ru-H-Ru angle is 110^o.

Conjugated non-cyclic diene complexes

Mixtures of iron tricarbonyl derivatives of dienes and dienones in *m*xylene and 2,4-dimethylacetophenone could be separated [317], and the ketones determined quantitatively, using high speed liquid—liquid partition chromatography.

By heating Fe(CO)₅ with 1-aryl-1-cyclopropylethylenes or 1,1-dicyclopropylethylene, iron tricarbonyl complexes of 2-aryl-1,3-pentadienes or 2cyclopropyl-1,3-pentadiene and 3-(1-propenyl)cyclohex-2-enone could be produced [318]. The compounds were formed by cyclopropane ring opening followed by hydrogen migration and coordination to iron, and the cyclohexenone species was produced from the cyclopropylpentadiene species by ring opening followed by CO insertion.

Reaction of 1-ferrocenyl-1-buten-3-ol with $Fe_2(CO)_9$ and Cu^{2^*} afforded [319] $(\pi - C_5H_5)Fe(\pi - C_5H_4CH=CHCH=CH_2)$ which reacted further with $Fe_2(CO)_9$ giving 298. UV irradiation of $Fe(PF_3)_5$ in the presence of a variety of butadiene derivatives, as well as 1,3-cyclohexa-, -cyclohepta- and -cycloocta-dienes, afforded [320] (diene)Fe(PF_3)_3; norbornadiene, also, gave $(C_7H_8)Fe(PF_3)_3$ without skeletal rearrangement. A crystal structure determination of $(1,4-C_4H_4Ph_2)$ -Fe(CO)₃ established [321], as expected, that there was no conjugation between the phenyl rings and the C₄ group.

Reaction of the dienyl cations, obtained [322] by acid dehydration of iron tricarbonyl derivatives of dienols (Scheme 40), with tertiary amines led SCHEME 40

either to addition to the diene fragment, or to proton abstraction, depending on the nature of the dienyl substituents. It was noted that $[(\pi-C_6H_7)Fe(CO)_3]^*$ was unaffected by water whereas the open-chain dienyl cations were readily hydrolysed. However, the open-chain dienyl species did not undergo CO displacement by I⁻ to give $(\pi$ -dienyl)Fe(CO)₂I. The triene 299 was also produced [323] by treatment of the cationic dienyl precursor with alumina for 1 h,

but after 60 h a mixture of isomeric dimers, probably 300 and 301, was formed. A possible mechanism is outlined in Scheme 41.

Non-cyclic heterodiene complexes

Reaction of the chalcone complex (PhCOCH=CHPh)Fe(CO)₄ with PPh₃ afforded [324] a mixture of (olefin)Fe(CO)₃(PPh₃) (A), (olefin)Fe(CO)₂(PPh₃) (B), Fe(CO)_{s-n}(PPh₃)_n (n = 1 or 2) and (PhCOCH)₂, but after one month, a 60% yield of (PhCOCH=CHPh)Fe(CO)₂(PPh₃) (302) was obtained. Similar treatment of (PhCOCH=CHCOPh)Fe(CO)₄ and (PhCOCH=CHCO₂Me)Fe(CO)₄ afforded mixtures of complexes of A and B type. Treatment of ω -phenylpolyene aldehydes with Fe₃(CO)₁₂ afforded [325] isomeric mixtures of [Ph-

(302)

 $(CH=CH)_n CHO]$ Fe $(CO)_3$ (n = 2.5). The major product was always an isomer with the Fe $(CO)_3$ group bound to the butadiene fragment adjacent to the aldehyde function. UV spectral studies indicated that the C₄Fe $(CO)_3$ unit interrupted considerably the transmission of conjugative effects along the polyene chain.

Reaction of the thiacyclobutenes 303 with Fe₂(CO), gave [326] 304 which, on treatment with PPh₃ (R = R' = H) afforded 305, the structure of

which has been elucidated [327] crystallographically. The thioacrolein ligand is essentially planar, the C—C distances being 1.39, 1.33, and the C—S distance 1.79 Å, respectively. Peroxide treatment of 304 (R = R' = H) gave 306 while thermolysis of the tricarbonyl afforded a dimeric species, represented either as 307 or 308.

The bimetallic 309 was produced [328] in low yield by reacting (π -C₅H₅)Fe(π -C₅H₄CH=CHCMe(OH)CH₂CN) with Fe₃(CO)₁₂ and Cu²⁺ in benzene.

Conjugated cyclic diene complexes

By heating $Fe_2(CO)_9$ in an autoclave with C_5H_6 or C_6H_8 for 10-15 h, the appropriate diene—iron tricarbonyl complexes could be prepared [329]. Treatment of 1,3,5-trimethyl-1,4-cyclohexadiene with $Fe_3(CO)_{12}$ afforded [330] a mixture (4/1) of the *exo-* and *endo-*species 310 and 311. Hydride abstraction from these gave the symmetrical trimethylcyclohexadienyl complex cation. Reaction of $Fe_3(CO)_{12}$ with 1,5,5-trimethyl-3-methylenecyclohex-1-ene afforded 312.

Methylcyclohexadiene carboxylates reacted [331] with Fe(CO)₅ giving complexes of the type 313 (R = R" = H, R' = CO₂Me; R = CO₂Me, R' = R" = H; R" = CO₂Me, R = R' = H); hydride abstraction gave the corresponding cyclohexadienyl salts, which were hydrolysed by water giving either hydroxo or dimeric ether complexes. Methoxide treatment of 313 (R = CO₂Me, R' = R" = H or R" = CO₂Me, R = R' = H) afforded 313 (R = R" = H; R' = CO₂Me), apparently the first reported example of a base-catalysed isomerisation of a cyclohexadiene—iron tricarbonyl system. Deuteration, in acidic methanol, of these carboxylate species afforded, stereospecifically and regardless of the starting material, 314. Saponification, followed by reduction of the carboxylic acid complex, afforded the alcohol (1-HOCH₂C_oH₇)Fe(CO)₃ which, on protonation, gave 315.

1-Methylene-2,3,4,4,5,6-hexamethyl-2,5-cyclohexadiene and 2,3,4,4,5,6-hexamethyl-2,5-cyclohexadienone reacted [332] with $Fe(CO)_5$ to give tricarbonyliron complexes of the 2,4-cyclohexa-diene or -dienone, respectively. The first reactions at least probably involved a 1,5-hydride shift from the 3or 5-methyl groups to the exocyclic methylene group, with participation of the iron carbonyl moiety.

Treatment of 316 with Fe₂(CO)₉ afforded [333] the expected iron tricarbonyl complex, the structure of which has been determined [334] crystallographically. The central C₄ ring is essentially square and planar while the cyclopentane ring has an envelope conformation; both ring fusions are *cis* and the 5- and 6-membered rings have an *anti* relationship to the 4-membered ring. The reaction of a mixture of 317 and 318 gave 319 (70%) and 320 (1%).

(321)

Cholesta-1,3- and -2,4-diene tricarbonyliron complexes reacted [335] with [Ph₃C][BF₄] to give the same dienyl cation, 321. Nucleophilic attack (H₂O, OMe⁻, CN⁻ or morpholine) on this species resulted in H^{*} elimination (Fig. 21) rather than addition of the nucleophile. Reaction of $(\pi$ -C₇H₇)Mo-(CO)₂Q (Q = B(pyz)₄, HB(pyz)₃, HB(pyzMe₂)₃ or Et₂B(pyz)₂; pyz = pyrazolyl, pyzMe₂ = 3,5-dimethylpyrazolyl) with Fe(CO)₅ under UV irradiation gave [336] the mixed metal complex QMo(CO)₂C₇H₇Fe(CO)₃ (322). These species were fluxional even after addition of the Fe(CO)₃ group to the C₇ ring, although the rates of site exchange were altered from that in the unsubstituted cycloheptatrienyl complex.

A detailed study [337] of the long-range HH coupling constants in butadiene, cyclohexa- and cyclohepta-dieneiron tricarbonyls confirmed that the protons attached to the formal double bonds were coplanar and therefore that the bonding in such complexes is best represented as in 323 rather than in 324. It was suggested [338] that differentiation between *exo-* and *endo*substituted cyclopentadieneiron tricarbonyl isomers could be made on the basis of an analysis of the mass spectral decomposition pattern emanating

Fig. 21.

from the molecular ion. Such fragmentation was characterised by radical scission of the *exo*-substituent, viz. Scheme 42, and it was proposed that such a

process would occur generally in isomeric pairs of this type. By γ -irradiation of $(C_6H_8)Fe(CO)_2(PPh_3)$, a radical anion was produced [339] which, at low temperature, reacted with n-BuCl giving, possibly, 325.

Upon irradiation of phenylcyclohexadiene in the presence of $Fe(CO)_5$, the mixture of isomers 326 and 327 (R = H) was formed [340]. An equilibrium between these isomers was established ($t_{14} = 4$ h at 145°C) for which K (326/327) = 3.35 ± 0.1. Two mechanisms were possible for isomerisation (Fig. 22); pathway (i) involved a concerted 1,5-sigmatropic hydrogen shift while pathway (ii) required the formation of an iron hydride intermediate. Pathway (i) required that there should be a considerable isotope effect and might not be restricted to hydrogen migration *cis* to the metal. Pathway (ii), on the other hand, would not necessarily involve hydrogen *cis* to the metal, and would not display an isotope effect provided that the rate-determining step involved the formation of a coordinatively unsaturated intermediate prior to hydrogen abstraction. Accordingly, isomerisations of 326 and 327 (R = D) [341] were studied. Scrambling of deuterium in 326 (R = D) was quite rapid, and from a study of the behaviour of a mixture of 326 (R = H and R = D), it was shown

Fig. 22.

that there was a small but significant isotope effect on the rate of conversion of **326** into **327**. Furthermore, while 35% isomerisation occurred when **326** was

heated, only 8% of 327 was obtained when PPh₃ was present, the major product (71%) being $Fe(CO)_3(PPh_3)_2$. This result was consistent with the trapping of a coordinatively unsaturated intermediate, e.g. 328 or 329, by the phosphine. That deuterium scrambling could occur only with the assistance of a phenyl ring (Scheme 43) was confirmed by the observation that no D was incorporated

SCHEME 43

into a vinylic site in 330 while scrambling of deuterium occurred in 331 via the equilibration with 332 (the rate of isomerisation was ca. 125 times faster than the rate of scrambling).

Polyene complexes

The monoterpenes, myrcene, *cis*-ocimene, *cis*- and *trans*-alloocimene and α -phellandrene formed [342] tricarbonyliron complexes. The compounds containing ocimene and *cis*-alloocimene isomerised on heating, or after treatment with [Ph₃C]^{*} followed by BH₄⁻, and the possible mechanisms of the thermal reactions are outlined in Fig. 23. The α -phellandrene complex underwent hydride abstraction to give the dienyl salt 333.

(333)

Reaction of $(C_7H_8)Fe(CO)_3$ $(C_7H_8 = cycloheptatriene)$ with $[C_7H_7]^*$ afforded [343] $[(C_7H_7C_7H_8)Fe(CO)_3]^*$ (334). The reactions of this ditropyl complex with TCNE are illustrated in Scheme 44, and it is seen that the uncomplexed olefin underwent 1,4-addition while the complexed moiety underwent 1,3-addition (these modes of addition are observed in the separate components of the compound). There was no evidence for 335. Reaction of the substituted cycloheptatrienes C_7H_7R (R = H, Me, Ph or C_6F_5) with $[Ru(CO)_4(SiMe_3)]_2$ gave [344] 336, together with a minor product (336, R = SiMe_3). An X-ray structural examination of the minor product established the overall molecular geometry, and the Ru—Ru distance is 2.94 Å, the silyl group being bent away from the C_7 ring. With the cycloheptatriene substituent R = CN or O(t-Bu) the product of this reaction was 336 (R = H), presumably via loss of SiMe_3R.

The ¹³C NMR spectra of the cyclooctatriene complexes 337 have been measured [345]. From the number of ¹³CO resonances, it was possible to anticipate fluxional or non-fluxional behaviour for the compounds. Treatment of the diazepine complex 338 ($R = CO_2Et$, R' = R'' = H) with NaOH afforded [346] 338 (R = R' = R'' = H) which existed in tautomeric equilibrium with 339 (R =

R' = R'' = H). Reaction of 338 (R = R' = R'' = H) with NaH/MeCOCl gave 338 (R = COMe, R' = R'' = H) while Li-n-Bu and PhCH₂Br afforded 339 ($R = CH_2Ph$) R' = R'' = H). When R' = R'' = H but R = Me, only the tautomeric form 339 was observed. The structure of 338 ($R = CO_2Me, R' = R'' = H$) was confirmed crystallographically [347].

Reaction of $C_7H_7CH_2OSO_2Ph$ with $Na[(\pi-C_5H_5)Fe(CO)_2]$ gave [348] the o-bonded cycloheptatriene species $(\pi-C_5H_5)Fe(CO)_2CH_2C_7H_7$. On treatment of this with $[Ph_3C]^+$, a tautomeric equilibrium between 340 and 341 was established in which the positive charge was distributed between the metal atom and the tropylium ring without there being direct bonding between them. This was cited as direct evidence for hyperconjugative or vertical stabilisation of carbonium ion

(342)

(343)

by a metalloalkyl substituent. When $C_7H_7CH_2OH$ or $C_7H_7CH_2OSO_2Ph$ was treated with simple iron carbonyls, the products were styrene, its $Fe(CO)_4$ complex and $(C_8H_8)Fe(CO)_3$, a proposed mechanism for the formation of the latter being shown in Scheme 45. With an excess of $Fe_2(CO)_9$, $C_7H_7CH_2OH$ afforded the tri-

SCHEME 45

methylenemethane derivative 342 (see ref. 266, and page 340), which reacted further with $Fe_2(CO)_9$ to give 343; 342 did not react with TCNE.

Isomerisation of 1,3,5-cyclooctatrieneiron tricarbonyl to the bicyclooctadiene species 344 occurred [349] in a first order reaction. Less than 1% of the triene complex remained at equilibrium, $(K_{eq} > 100 \text{ and } \Delta F = -3.4 \text{ kcal/mol})$, while for the free olefin, the triene was favored over the bicyclic diene ($K_{eq} =$ 0.18, $\Delta F = 1.1 \text{ kcal/mol}$). The large shift in equilibrium presumably reflected the relative distortions, and resulting ring strain, introduced into the two olefins by complexing with Fe(CO)₃.

(350)

(351)

The series of products obtained [350] by treating bicyclo[6.2.0]deca-2,4,6-triene with Fe₂(CO), have been identified spectrally and crystallographically as trans-(C₈H₈)[Fe(CO)₃]₂, (C₈H₈)Fe₂(CO)₅, and 345-351.

A detailed mass spectral study has been made [351] of $(C_8H_7R)Fe(CO)_3$ (R = CHO, CH₂OH, CHMeOH and CH₂OMe). Broad-line 'H NMR spectral studies, over the temperature range -196 to +70°C, of Fe(C₈H₈)₂ revealed [352] that the molecule existed in a tautomeric equilibrium in the solid phase.

Treatment of $[(C_7H_8)RuCl_2]_n$ $(C_7H_8 = norbornadiene)$ with $K_2C_8H_8$ in THF gave [353] the fluxional $Ru(C_7H_8)(C_8H_8)$ (352), together with $Ru(C_7H_8)$ - (C_8H_{10}) and an unidentified complex. The last was also produced together with $Ru_2(C_7H_8)_2(C_8H_8)$ (353), in the reaction between $[Ru(C_7H_8)Cl_2]_n$, K

(352) (353)

metal, and C_8H_8 in THF. The known [354] $\operatorname{Ru}(C_8H_{12})(C_8H_{10})$ was prepared in the reaction of the 1,5-cyclooctadiene complex $[\operatorname{Ru}(C_8H_{12})Cl_2]_n$ with $K_2C_8H_8$, and it seemed probable that the C_8H_{12} was bonded to the Ru atom via a π allyl/ σ -C system, as in $(C_8H_{12})\operatorname{Ru}(CO)_3$. The osmium analog afforded $\operatorname{Os}(C_8H_{12})$ - (C_8H_8) and the known [354] $\operatorname{Os}(C_8H_{12})(C_8H_{10})$. Treatment of $\operatorname{Ru}(PPh_3)_3Cl_2$ with $K_2C_8H_8$ gave $Ru(C_8H_8)(PPh_3)_2$, and the analogous $Ru(C_8H_8)(PPhMe_2)_3$ was prepared similarly. In $Ru(C_8H_8)(PPh_3)_2$, $Ru(C_7H_8)(C_8H_8)$ and $Os(C_8H_{12})(C_8H_8)$, only three double bonds of the cyclooctatetraene ring are involved in bonding to the metal. $Ru(C_7H_8)(C_8H_8)$ reacted with $P(OCH_2)_3CEt(L)$ giving $Ru(C_7H_8)L_3$, while with other phosphines (L), a mixture of $Ru(C_7H_8)L_3$ and $Ru(C_8H_8)L_n$ (n = 2 or 3) was formed. $Ru(C_7H_8)(C_8H_8)$ and $Ru(C_8H_8)(PPh_3)_2$, but not its PPhMe₂ analog, were active catalysts, or catalyst precursors for the hydrogena-

tion of 1-butene, and while C_2H_4 reacted irreversibly with $Ru(C_7H_8)(C_8H_8)$, an unidentified compound, not $Ru(C_7H_8)(C_2H_4)$, was formed.

cis-Cyclononatetraene could be stabilised [355] by reaction of either 354 or 355 with Fe₂(CO)₉ (or Fe(CO)₅ under UV light) giving either 356 or 357. Among the other products of this reaction were 358, 359, either 360 or 361 and 362. Although 356 was stable for several days at room temperature, it underwent an electrocyclic ring closure reaction at 101° giving 358. Protonation of 356 in FSO₃H-SO₂FCl gave 363.

Complexes containing metal—carbon σ -bonds, and carbenes

Metal carbonyl complexes

Treatment of $Fe(CO)_5$ with LiC_6F_5 gave [356], initially, $Li[Fe(CO)_4COC_6-$

F₅]. Addition to this of SiMe₃Cl afforded the previously reported [357] Fe₂-(CO)₈(C₆F₄) (364), the structure of which was determined. The fluorobenzene

ring is coplanar with the Fe—Fe bond (2.80 Å). Reaction of Na₂[Fe(CO)₄] with 1,3-dibromopropane in the presence of PPh₃ and PPhMe₂ gave [358] 365 (L = tertiary phosphine).

Metallocyclopentadienyl complexes

Fe₃(CO)₁₂ reacted [359] with PhC=C(p-ClC₆F₄) affording 12 products, including the π -cyclobutadiene species (PhC₂C₆F₄Cl)₂Fe(CO)₄, as well as 366 and 367. The complexes 217 (m = 4, n = 4, 5 or 6; m = 5 and n = 6) were pre-

pared [361] directly from the benzalacetone complex (PhCH=CHCOMe)Fe- $(CO)_3$ and the appropriate diacetylene 215 (see ref. 252, 360 and page 337).

o-Metallated compounds

Treatment of $Ru_3(CO)_{12}$ with $(p-RC_6H_4)_2CS$ gave [362] 368 (see ref. 38 and 39, page 283). Ruthenium and osmium dodecacarbonyls reacted [363] with

(368)

benzo[h] quinoline giving one of the isomers 369, 370 or 371. Reaction of the quinoline with $[(\pi-C_5H_5)Fe(CO)_2]_2$ afforded only $[(\pi-C_5H_5)Fe(CO)]_4$.

The 1-naphthylphosphine, $P(C_8H_7)Me_2$ (L), reacted [364] with $RuCl_3 \cdot nH_2O$ giving RuL_3Cl_2 . Treatment of this with CO afforded 372 (M = Ru), and sim-

ilar, though labile, adducts were obtained with MeCN, MeNC and TCNE. On heating in decalin, RuL₃Cl₂ underwent *o*-metallation, with loss of HCl, giving Ru(CO)-L₂[C-PMe₂]Cl ([C-PMe₂], Fig. 24) as a single isomer. Treatment of OsO₄ with L in a mixture of HCl and 2-methoxyethanol gave OsL₃Cl₃ and OsL₂[C-PMe₂]Cl₂ (on heating the former at 270°, the latter was formed). Reaction of OsL₂[C-PMe₂]Cl₂ with CO in 2-methoxyethanol afforded 372 (M = Os) and treatment with NaOH in the same solvent gave Os(CO)L[C-PMe₂]₂.

Reaction of a series of osmium triphenylphosphine hydride complexes with $P(OPh)_3$ afforded [365] a series of *o*-metallated species which were produced via intermediary phosphite complexes. Thus, treatment in boiling decalin of $Os(PPh_3)_3$. H₄ with $P(OPh)_3$ gave 373 while $Os(CO)(PPh_3)_3H_2$ and $Os(CO)(PPh_3)_3HC1$ re-

(373)

acted according to Scheme 46. It may be noted that $Os(CO)P(OPh)_3HCl$ was not detected, whereas evidence could be obtained or inferred for all the other species illustrated.

Alkylmetals

At -20° C or lower in ether, anhydrous FeCl₃ reacted [366] with LiMe (molar ratio 1/5) to give Li₂FeMe₄. This was formed as a yellow precipitate at -78° , or a red etherate at -30° and could be obtained at, or just below 0°, as

 $(P = PPh_3; P' = P(OPh)_3)$

a light yellow dioxane adduct. Attempts to isolate [367] benzyl complexes from the reaction between FeCl_n (n = 2 or 3) and Mg(CH₂Ph)Cl in ether were unsuccessful, but there was some evidence for FeMeCl₂, obtained in the reaction between FeCl₃ and ZnMe₂.

Treatment of Fe(bipy)R₂ (R = Me or Et) with AlR'₃ or AlR'₂(OEt) (R' = Me, Et or n-Pr) resulted [368] in decomposition, and elimination mainly of RH. Reaction of 374 (R = NCS) with R'NHNH₂ (R' = Me, Et or Ph) gave [369] 374 (R = Me, Et or Ph), and the structure of the species (R = Ph) has been confirmed crystallographically. The Fe atom is displaced by ca. 0.23 Å out of the plane of the 4 nitrogen atoms, towards the aryl group. The iron(II) phthalocyanin (FePc) complex reacted [370] with LiCH₂SPh giving [FePc(CH₂SPh)]⁻.

'H NMR spectral studies of the o-phenyl protons in $Ru(Ph_2PCH_2CH_2PPh_2)_2$ -ClMe confirmed [371] that the complex had an overall cis-geometry.

Carbene complexes

Reaction of $Fe(CO)_s$ with the electron-rich olefin 375 (L₂) afforded [372] $Fe(CO)_4L$. A study has been made [373] of the electronic and steric control

exerted by the ligands in the reaction between $Fe(CO)_4L$ (L = tertiary phosphine or phosphite) and Mg(CH₂Ph)Cl. Addition of the alkyl group occurred at the CO group *trans* to L, and it was stated that the electronic properties of CO, as measured by the stretching force constant or $\nu(CO)$, dominated the reactive site within the molecules and also determined the rate of reaction of the Grignard reagent with the coordinated CO.

Organic reactions catalysed or promoted by iron or ruthenium complexes

Hydrogenation

The relative rates of homogeneous hydrogenation [374] of olefins by Ru-(CO)₂(PPh₃)₂Cl₂, in the presence of added PPh₃, decreased in the order conjugated diene > non-conjugated diene > terminal alkene > internal alkene. In general, polyenes were selectively hydrogenated to monoenes, and, for example, 1,5,9-cyclododecatriene could be reduced [375] to cyclododecene. Competitive reactions involved [374] double bond isomerisation, group migration reactions and transannular ring closures. The lower hydrogenation rate for alkenes, in comparison with dienes, was attributed to the equilibrium between the intermediary species Ru(CO)₂(alkyl)Cl₂ and Ru(CO)₂(PPh₃)(alkyl)Cl which, in the presence of added PPh₃, formed sterically crowded complexes. It was postulated that such sterically crowded intermediates would readily undergo RuH elimination (β -elimination), while the less overcrowded species would survive long enough to undergo hydrogenolysis. A proposed mechanism is shown in Scheme 47.

Two-electron reduction of $\operatorname{Ru}_3O(\operatorname{PPh}_3)_3(\operatorname{CO}_2\operatorname{Me})_6$ probably gave [376] Ru(PPh₃)(OAc)₂ which, in the presence of methanol, PPh₃ and a non-complexing acid afforded an orange-red species which was a catalyst for the hydrogenation of olefins. A similar species could be produced by acidolysis of Ru(PPh₃)₂-H(OAc) or Ru(PPh₃)₄H₂, and it was suggested that the initial product of these reactions was [Ru(PPh₃)₄(lefin)(solvent)]²⁺. In the presence of olefin, it seemed likely that [Ru(PPh₃)₂(olefin)(solvent)]²⁺ would be formed. On standing, or on treatment with H₂ or CO, in the absence of olefin, this orange-red species afforded the yellow, catalytically (i.e. hydrogenation) inactive [Ru(PPh₃)₂(OH)-(BF₄)]₂. Ru(PPh₃)(OAc)₂ reacted with air giving Ru₂O(PPh₃)₂(OAc)₄.

A series of ruthenium(II) arene complexes, formulated as $[Ru(Ar)Cl_2]_n$ -[RuCl_2]_n (where Ar = C₆H₆, 1,3,5-C₆H₃Me₃, 1,3,5-C₆H₃Ph₃), hydrogenated [377, 378] olefins, the best yields being obtained in the presence of traces of pyrrolidine. The compound containing 1,3,5-C₆H₃Ph₃ had the greatest activity. It was suggested [377] that the active species might be a hydride complex, possibly [(π -arene)ClRu(μ -H)(μ -Cl)RuCl(π -arene)].

Formation and reactions of ketones and related species

Benzyl bromide was converted [379] by Fe₂(CO)₉ into a 60% yield of dibenzylketone over 4 h in hexane, and similar conversions were effected where the aryl group was $3,5-C_6H_3Me_2$, 1- or 2-naphthyls. Reaction of Fe₂(CO)₉ with $C_6F_5CH_2Br$ gave initially the unstable Fe(CO)₄(CH₂C₆F₅)₂, together with some (C₆F₅CH₂)₂CO, and the former was quantitatively converted to the latter at 80° in benzene. A heptafluoro-2-naphthyl complex, and the corresponding ketone, were prepared similarly, but (CF₃)₃CFI gave only (CF₃)₃CH and Fe-(CO)₄I₂.

Treatment of Na₂[Fe(CO)₄] with RCOX (R = alkyl, X = halide) gave [380] Na[Fe(CO)₄COR] which, on addition of R'X (R = perfluoralkyl or C₆F₅), afforded the hemifluorinated ketones, RCOR'. These compounds could also be obtained via the "inverse route", viz. Na[Fe(CO)₄COR'] + RX, or by treatment of Na[Fe(CO)₄R] with R'COCI. Reaction of Na[Fe(CO)₄COR] (R = alkyl) with halogen and water, or with NaOCl or O₂ followed by aqueous acid, gave [381] the carboxylic acids RCO₂H. Treatment of the carbonylate ion with halogen and R'OH or R'R"NH afforded the esters, RCO₂R', or amides, RCO₂NR'R". In THF, primary aliphatic bromides reacted with Na₂[Fe(CO)₄] at a rate greater than 10⁴ times faster than that of the corresponding chlorides, and polar solvents such as hexamethylphosphoramide or *N*-methyl-2-pyrrolidine were used in order to encourage reaction with the less reactive alkyl chlorides. The yields were generally virtually quantitative, and Br(CH₂)₆Cl afforded Cl(CH₂)₆CO₂H in 84% yield.

The reaction of α, α' - dibromoketones with aromatic olefins [382] (Scheme 48) and carboxamides [383] (Scheme 49) was promoted by Fe₂(CO)₉. It was

SCHEME 48

believed that in both cases, a π -oxyallyliron(II) intermediate (Fig. 25) was formed.

Diphenylbutadiyne reacted [384] with carbodiimides in the presence of $Fe(CO)_5$ at 155-210°C to give 376, 377 and 378. It was thought that aryliso-

(379)

cyanideiron complexes were intermediates in the formation of the pyrroline rings from the diacetylene and ArN=C=NAr (Scheme 50).

Other reactions

While $Fe(CO)_5$ or $[Fe_3(CO)_{11}H]^-$ denitrogenated [385] RCH=NOH to RCHO, they could also effectively deoxygenate ArClC=NOH or nitrile oxides to ArCN. The addition of ethylene to 1,1,1-trichloro-2,2-bis(*p*-chlorophenyl)-ethane, giving 379 was initiated [386], probably in a radical reaction, by Fe-(CO)₅ under pressure at 140°.

Fig. 25.

References p. 372

References

- 1 M. Poliakoff and J.J. Turner, J. Chem. Soc. Dalton, (1973) 1351.
- 2 R.C. Dunbar, J.F. Ennever and J.P. Fackler, Jr., Inorg. Chem., 12 (1973) 2734.
- 3 J. Grobe, J. Kaufmann and F. Kober, Z. Naturforsch. B, 28 (1973) 691.
- 4 M.B. Smith and R. Bau, J. Amer. Chem. Soc., 95 (1973) 2388.
- 5 F. Wada and T. Matsuda, J. Organometal. Chem., 61 (1973) 365.
- 6 R.D. George, S.A.R. Knox and F.G.A. Stone, J. Chem. Soc. Dalton, (1973) 972.
- 7 J.P. Collman and S.R. Winter, J. Amer. Chem. Soc., 95 (1973) 4089
- 8 H. Kisch, J. Organometal. Chem., 38 (1972) C19; C. Kruger, Chem. Ber., 106 (1973) 3230.
- 9 J.P. Collman, R.G. Komoto and W.O. Siegi, J. Amer. Chem. Soc., 95 (1973) 2389.
- 10 A.T.T. Hsieb and G. Wilkinson, J. Chem. Soc. Dalton, (1973) 867.
- 11 C.B. Bartish and C.S. Kraihanzel, Inorg. Chem., 12 (1973) 391.
- 12 F.A. Cotton, K.I. Hardcastle and G.A. Rusholme, J. Coordin. Chem., 2 (1973) 217.
- 13 M.A. Bennett, G.B. Robertson, I.B. Tomkins and P.O. Whimp, J. Chem. Soc. Chem. Commun., (1971) 341.
- 14 G.B. Robertson and P.O. Whimp, J Chem. Soc. Dalton, (1973) 2454.
- 15 W.E. Carroll, F.A. Deeney, J.A. Delaney and F.J. Lalor, J. Chem. Soc. Dalton, (1973) 718; M.G. Clark, W.R. Cullen, R.E.B. Garrod, A.G. Maddock and J.R. Sams, Inorg. Chem., 12 (1973) 1045.
- 16 J.D. Black, M.J. Boylan, P.S. Braterman and W.J. Wallace, J. Organometal. Chem., 63 (1972) C21.
- 17 D.P. Bauer, W.M. Douglas and J.K. Ruff, J. Organometal. Chem., 57 (1973) C19.
- 18 E. Lindner, H. Behrens and D. Uhlig, Z. Naturforsch. B, 28 (1973) 276.
- 19 G.T. Kubas and T.G. Spiro, Inorg. Chem., 12 (1973) 1797.

- 20 G. Schmid, J. Pebler and L. Weber, J. Organometal. Chem., 61 (1973) 375.
- 21 H. Alper, J. Organometal. Chem., 50 (1973) 209.
- 22 P.C. Ellgen and S.L. McMullin, Inorg. Chem., 12 (1973) 2004.
- 23 G. Le Borgne and D. Grandjean, Acta Crystallogr. B, 29 (1973) 1040.
- 24 K. Yasufuku and H. Yamazaki, Bull. Chem. Soc. Jap., 42 (1969) 3049 and J. Organometal. Chem., 35 (1972) 367.
- 25 B.L. Barnett and C. Krüger, Cryst. Struct. Commun., 2 (1973) 347.
- 26 E.F. Epstein and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 502.
- 27 H.A. Patel, R.G. Fischer, A.J. Carty, D.V. Naik and G. Palenik, J. Organometal. Chem., 60 (1973) C49.
- 28 P.M. Treichel, W.K. Dean and P.M. Douglas, Inorg. Chem., 11 (1972) 1609 and 1615; J. Organometal. Chem., 42 (1972) 145.
- 29 P.M. Treichel, W.K. Dean and J.C. Calabrese, Inorg. Chem., 12 (1973) 2908.
- 30 A.H. Cowley and K.E. Hill, Inorg. Chem., 12 (1973) 1446.
- 31 F.W.B. Einstein and R.D.G. Jones, Inorg. Chem., 12 (1973) 255.
- 32 W.R. Cullen and L. Mihichuk, Can. J. Chem., 51 (1973) 936.
- 33 H. Vahrenkamp, Chem. Ber., 106 (1973) 2570.
- 34 J. Granifo and H. Müller, J. Chem. Soc. Daiton, (1973) 1891.
- 35 P.C. Ellgen and J.N. Gerlach, Inorg. Chem., 12 (1973) 2526.
- 36 R. Mason and D.M.P. Mingos, J. Organometal. Chem., 50 (1973) 53.
- 37 G.N. Schrauzer and H. Kisch, J. Amer. Chem. Soc., 95 (1973) 2501.
- 38 H. Alper and A.S.K. Chan, J. Chem. Soc. Chem. Commun., (1973) 724.
- 39 H. Alper and A.S.K. Chan, J. Amer. Chem. Soc., 95 (1973) 4905.
- 40 L.S. Chia, W.R. Cullen, J.R. Sams and J.E.H. Ward, Can. J. Chem., 51 (1973) 3223.
- 41 L.R.J. Delbaere, L.J. Kruczynski and D.W. McBride, J. Chem. Soc. Dalton, (1973) 309.
- 42 C.H. Wei and L.F. Dahl, J. Amer. Chem. Soc., 91 (1969) 1351.
- 43 L.F. Dahl and J.F. Blount, Inorg. Chem., 4 (1965) 1373.
- 44 W. Hieber, J. Gruber and F. Lux, Z. Anorg. Allg. Chem., 300 (1959) 275.
- 45 A.J. Poe and M.V. Twigg, J. Organometal. Chem., 50 (1973) C39.
- 46 E. Sappa and L. Milone, J. Organometal. Chem., 61 (1973) 383.
- 47 B.L. Barnett and C. Kruger, Angew. Chem Int. Ed. Engl., 10 (1971) 910.
- 48 E. Koerner von Gustorf, M.C. Henry, R.E. Sacher and C. di Pietro, Z. Naturforsch. B, 21 (1966) 1152; T.A. Manuel, Inorg. Chem., 3 (1964) 1703; M.M. Bagga, P.L. Pauson, F.J. Preston and R.I. Reed, Chem. Commun., (1965) 543; W.T Flannigan, G.R. Knox and P.L. Pauson, Chem. Ind. London, (1967) 1094; M. Dekker and G.R. Knox, Chem. Commun., (1967) 1243.
- 49 B.F.G. Johnson, R.D. Johnston, P.L. Josty, J. Lewis and I.G. Williams, Nature, 213 (1967) 901; B.F.G. Johnson, J. Lewis and P.A. Kilty, J. Chem. Soc. A, (1968) 2859.
- 50 E. Sappa, O. Gambino and G. Cetini, J. Organometal. Chem., 35 (1972) 375; O. Gambino, E. Sappa and G. Cetini, J. Organometal. Chem., 44 (1972) 185; A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 36 (1972) C43, A.J. Canty, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 43 (1972) C35.
- 51 M.I. Bruce, G. Shaw and F.G.A. Stone, J. Chem. Soc. Dalton, (1973) 1667; M I Bruce, J. Howard, I.W. Nowell, G. Shaw and P. Woodward, J. Chem. Soc. Chem. Commun., (1972) 1041.
- 52 M.I. Bruce, C.W. Gibbs and F.G.A. Stone, Z. Naturforsch. B. 23 (1968) 1543.
- 53 C.W. Bradford and R.S. Nybolm, J. Chem. Soc. Dalton, (1973) 529.
- 54 C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Ireland and R. Mason, J. Chem. Soc. Chem. Commun., (1972) 87; G.J. Gainsford, J.M. Guss, P.R. Ireland, R.Mason, C.W. Bradford and R.S. Nyholm, J. Organometal. Chem., 40 (1972) C70.
- 55 A.J. Deeming and M. Underhill, J. Chem. Soc. Dalton, (1973) 2727.
- 56 A.J. Deeming, R.E. Kimber and M. Underhill, J. Chem. Soc. Dalton, (1973) 2589.
- 57 A.D. Buckingham, J.P. Yesinowski, A.J. Canty and A.J. Rest, J. Amer. Chem. Soc., 95 (1973) 2732.
- 58 A.J. Deeming and M. Underhill, J. Organometal. Chem., 42 (1972) C60 and J. Chem. Soc. Chem. Commun., (1973) 277.
- 59 A.J. Canty, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Chem. Comm., (1972) 1331
- 60 A.J. Canty, A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton, (1973) 2056.
- 61 A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 36 (1972) C43.
- 62 M.I. Bruce, M.A. Cairns, A.Cox, M. Green, M.D.H. Smith and P. Woodward, Chem. Commun., (1970) 735; M.I. Bruce, M.A. Cairns and M. Green, J. Chem. Soc. Dalton, (1972) 1293.
- 63 R. Mason and K.M. Thomas, J. Organometal. Chem., 43 (1972) C39.
- 64 G. Gervasio and G. Ferrans, Cryst. Struct. Comm., 3 (1973) 447.
- 65 J.F. Blount, L.F. Dahl, C. Hoogzand and W. Hubel, J. Amer. Chem. Soc., 88 (1966) 292.
- 66 G.A. Vagho, O. Gambino, R.P. Ferrari and G. Cetini, Inorg. Chim. Acta, 7 (1973) 193.
- 67 G. Ferrans and G. Gervasio, J. Chem. Soc. Dalton, (1973) 1933.
- 68 G. Ferraris and G. Gervasio, J. Chem. Soc. Dalton, (1972) 1057.
- 69 B. Munchenbach and J. Dehand, Naturwissenschaften, 59 (1972) 647.

- 70 K.M. Abraham and G. Urry, Inorg. Chem., 12 (1973) 2854.
- 71 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 57 (1973) C84.
- 72 C.R. Eady, B.F.G. Johnson, J. Lewis and T. Matheson, J. Organometal. Chem., 57 (1973) C82.
- 73 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 37 (1972) C39.
- 74 R.D. Stewart, U. Anders and W.A.G. Graham, J. Organometal. Chem., 32 (1971) C49.
- 75 R. Mason, K.M. Thomas and D.M.P. Mingos, J. Amer. Chem. Soc., 95 (1973) 3802.
- 76 C.S. Springer, J. Amer. Chem. Soc., 95 (1973) 1459.
- 77 R.K. Pomeroy, R.S. Gay, G.O. Evans and W.A.G. Graham, J. Amer. Chem. Soc., 94 (1972) 272.
- 78 G. Schmid and H.-P. Kempny, Angew. Chem. Int. Ed. Engl., 12 (1973) 670.
- 79 F. Glocking and R.E. Houston, J. Organometal. Chem., 50 (1973) C31.
- 80 J.P. Fawcett, A.J. Poe and M.V. Twigg, J. Organometal. Chem., 51 (1973) C17.
- 81 M.A. Nasta and G. MacDiarmid, J. Amer Chem Soc., 93 (1971) 2813 and 94 (1972) 2449.
- 82 M.J. Bennett, W.A.G. Graham, R.A. Smith and R.P. Stewart, Jr., J. Amer. Chem. Soc., 95 (1973) 1685.
- 83 T.J. Marks and A.R. Newman, J. Amer. Chem. Soc., 95 (1973) 769.
- 84 G.W. Grynkewich, B.Y.K. Ho, T.J. Marks, D.L. Tomaja and J.J. Zuckerman, Inorg. Chem., 12 (1973) 2522.
- 85 T. Takano, Bull. Chem. Soc. Jap., 46 (1973) 522.
- 86 D.A. Baldwin, R.M. Pfeuffer, D.W. Reichgott and N.J. Rose, J. Amer. Chem. Soc., 95 (1973) 5152.
- 87 V.L. Goedken, J. Molin-Case and Y. Whang, J. Chem. Soc. Chem. Commun., (1973) 337.
- 88 J.E. Baldwin and J. Huff, J. Amer. Chem. Soc., 95 (1973) 5757.
- 89 C.K. Chang and T.G. Traylor, J. Amer. Chem. Soc., 95 (1973) 8475 and 8477.
- 90 D V. Stypes and B.R. James, J. Chem. Soc. Chem. Commun., (1973) 325.
- 91 D.V. Stynes, H.C. Stynes, B.R. James and J.A. Ibers, J. Amer. Chem. Soc., 95 (1973) 4087.
- 92 Q.H. Gibson and F.J.W. Roughton, J. Physiol. London, 136 (1957) 507.
- 93 J.P. Coliman and C.A. Reed, J Amer Chem Soc , 95 (1973) 2048
- 94 N.A. Matwiyoff, P.J. Vergamini, T.E. Needham, C.T. Gregg, J.A. Volpe and W.S. Caughey, J. Amer Chem. Soc., 95 (1973) 4429.
- 95 B.C. Chow and I.A. Cohen, Bioinorg. Chem., 1 (1971) 57; M. Tsutsui, D. Ostfeld and L.M. Hoffman, J. Amer. Chem. Soc., 93 (1971) 1820; M. Tsutsui, D. Ostfeld and J.N. Francis, J. Coordin. Chem., 1 (1971) 115; S.S. Eaton, G.R. Eaton and R.H. Holm, J. Organometal. Chem., 32 (1971) C52 and 39 (1972) 179.
- 96 D. Cullen, E. Meyer, T.S. Snvastava and M. Tsutsu, J. Chem. Soc. Chem. Commun., (1972) 584.
- 97 J.J. Bonnet, S.S. Eaton, G.R. Eaton, R.H. Holm and J.A. Ibers, J. Amer. Chem. Soc., 95 (1973) 2141. 98 R.G. Little and J.A. Ibers, J. Amer. Chem. Soc., 95 (1973) 8583.
- 99 G.M. Brown F.R. Hopf, J A. Ferguson, T.J. Meyer and D.G. Whitten, J. Amer. Chem Soc., 95 (1973) 5939.
- 100 G.R. Dobson, R.T. Jernigan and P.-T. Chang, J. Organometal. Chem., 54 (1973) C33.
- 101 P. Vasudev and C.H.W. Jones, Can. J. Chem., 51 (1973) 405.
- R.H. Herber, R.B. King and G.K. Wertheim, Inorg. Chem., 3 (1964) 101; E. Fluck, W. Kerler and
 W. Neuwarth, Angew. Chem. Int. Ed. Engl., 2 (1963) 271; R.L. Collins and R. Peltit, J. Chem.
 Phys., 39 (1963) 3433
- 103 J. Chatt, B.L. Shaw and A E. Field, J. Chem. Soc., (1964) 3466; J.L. Dawes and J D Holmes, Inorg. Nucl. Chem. Lett., 7 (1971) 847.
- 104 M.L. Berch and A. Davison, J. Inorg. Nucl. Chem., 35 (1973) 3763.
- 105 G.M. Bancroft and E.T. Libbey, J. Chem. Soc. Dalton, (1973) 2103.
- 106 W.E. Newton and J.E. Searles, Inorg. Chim. Acta, 7 (1973) 349.
- 107 B.R. James, L.D. Markham, B.C. Hui and G.L. Rempel, J. Chem. Soc. Dalton, (1973) 2257.
- 108 L. Ruiz-Ramirez, T.A. Stephenson and E.S. Switkes, J. Chem. Soc. Dalton, (1973) 1770.
- 109 D. Negoiu and I. Serban, An. Univ. Bucuresti, Chim., 21 (1972) 37.
- 110 D.F. Gill, B.E. Mann and B.L. Shaw, J. Chem. Soc. Dalton, (1973) 311.
- 111 D.F. Gill, R. Mason, B.L. Shaw and K.M. Thomas, J. Organometal. Chem., 40 (1972) C67.
- 112 G.R. Crooks, B.F.G. Johnson, J. Lewis, I.G. Williams and G.A. Gamlen, J. Chem. Soc. A, (1969) 2761.
- 113 W.O. Siegi, S.J. Lapporte and J.P. Coliman, Inorg. Chem., 12 (1973) 674.
- 114 R. Whyman, J. Organometal. Chem., 56 (1973) 339.
- 115 P. Meakin, E.L. Muetterties and J.P. Jesson, J. Amer Chem. Soc , 95 (1973) 75
- 116 J.R. Sanders, J. Chem. Soc. Dalton, (1973) 743.
- 117 I.S. Kolomnikov, A.I. Gusev, G.G. Aleksandrov, T.S. Lobeeva, Yu T. Struchkov and M.E. Vol'pm, J. Organometal. Chem., 59 (1973) 349.
- 118 S.D. Robinson and M.F. Utiley, J. Chem. Soc. Dalton, (1973) 1912.
- 119 S.S. Sandhu and A.K. Mehta, Inorg. Nucl. Chem. Lett., 9 (1973) 1197.
- 120 F.G. Moers, R.W.M. ten Hoedt and J.P. Langhout, Inorg. Chem., 12 (1973) 2196.
- 121 B. Bell, J. Chatt and G.J. Leigh, J. Chem. Soc. Dalton, (1973) 997.

- 122 A.L. Balch, J. Amer. Chem. Soc., 95 (1973) 2723, I. Bernal, A. Clearfield, E.F. Epstein, J.S. Ricci, A.L. Balch and J.S. Miller, J. Chem. Soc. Chem. Commun., (1973) 39, J.S. Miller and A.L. Balch, Inorg. Chem., 10 (1971) 1410.
- 123 C. Eaborn, N. Farrell, J.L. Murphy and A. Pidcock, J. Organometal. Chem., 55 (1973) C68.
- 124 G. Condorelli, L. Giallongo, A. Giuffrida and G. Romeo, Inorg. Chim. Acta., 7 (1973) 7.
- 125 J.W. Schwindler, J.R. Luoma and J.P. Cusick, Inorg. Chim. Acta, 7 (1973) 563.
- 126 D.J. Doonan and A.L. Balch, J. Amer. Chem. Soc., 95 (1973) 4769.
- 127 J.S. Miller, A L. Balch and J.H. Enemark, J Amer Chem. Soc., 93 (1971) 4613.
- 128 J. Chatt, R.L. Richards and G.H.D. Royston, J. Chem. Soc. Dalton, (1973) 1433.
- 129 S. Sorriso, G. Distefano and A. Foffani, J. Organometal. Chem., 47 (1973) 139.
- 130 B.F.G. Johnson and J.A. Segal, J. Chem. Soc. Dalton, (1972) 1268.
- 131 B.F.G. Johnson and J.A. Segal, J. Chem. Soc. Dalton, (1973) 478.
- 132 J. Ashley-Smith, B.F.G. Johnson and J.A. Segal, J. Organometal. Chem., 49 (1973) C38.
- 133 J. Clemens, M. Green and F.G.A. Stone, J. Chem. Soc. Dalton, (1973) 375.
- 134 P.R. Hoffman, J.S. Miller, C.B. Ungermann and K.G. Caulton, J. Amer. Chem. Soc., 95 (1973) 7902.
- 135 J. Reed, A.J. Schultz, C.G. Pierpoint and R. Eisenberg, Inorg. Chem., 12 (1973) 2949.
- 136 C.G. Pierpoint and R. Eisenberg, Inorg. Chem., 12 (1973) 199
- 137 B.B. Wayland and L.W. Olson, J. Chem. Soc Chem. Commun., (1973) 897; L. Vaska and H. Nakai, J. Amer. Chem. Soc., 95 (1973) 5431.
- 138 V.S. Psalidas, L.A. Butman, P.M. Sorku and V.M. Sinitsyn, Vestn. Mosk. Univ., Khim., 14 (1973) 44.
- 139 T.S. Khodashova, M.A. Poral-Koshits, V.S. Sergienko, N.A. Parolev and G.B. Boku, Zh. Strukt. Khim. 13 (1972) 1105.
- 140 M.C.R. Symons, D X. West and J.G. Wilkinson, J. Chem. Soc. Chem. Commun., (1973) 917
- 141 S.D. Pell and J.N. Armor, J. Amer. Chem. Soc., 95 (1973) 7625
- 142 J.N. Armor, Inorg. Chem., 12 (1973) 1959.
- 143 S D. Pell and J.N. Armor, Inorg. Chem., 12 (1973) 873
- 144 F. Bottomley and S.B. Tong, J. Chem. Soc. Dalton, (1973) 217.
- 145 F. Bottomley, W.V.F. Brooks, S.G. Clarkson and S.-B. Tong, J. Chem. Soc. Chem. Commun., (1973) 919.
- 146 D. Gwost and K.G. Caulton, J. Chem. Soc. Chem. Commun., (1973) 64, and loorg. Chem., 12 (1973) 2095.
- 147 B Haymore and R.D. Feltham, Inorg. Synth., 14 (1973) 14.
- 148 T. Kruck, J. Waldmann, M. Hofler, G. Buckenhäger and G. Odenbrett, Z. Anorg Allg Chem., 402 (1973) 16
- 149 J. Schmidt, W L. Dorn and R. Kramolowsky, Inorg. Chim. Acta, 7 (1973) 433.
- 150 W. Hieber and K. Kaiser, Z. Anorg Allg. Chem., 358 (1968) 271.
- 151 T. Birchall and K.M. Tun, J. Chem. Soc. Dalton, (1973) 2521.
- 152 R.O. Harris, N.K. Hota, L Sadavoy and J.M.C. Yuen, J. Organometal. Chem., 54 (1973) 259.
- 153 J.R. Norton and J.P. Collman, Inorg. Chem., 12 (1973) 476.
- 154 J.P. Candlin and A.C. Shortland, J. Organometal. Chem., 16 (1969) 289; G. Cetini, O. Gambino, E. Sappa and G.A. Vagho, Atti Accad. Sci. Torino Cl. Sci. Fis., Mat. Natur., 101 (1966-67) 855.
- 155 O. Crighton, M. Poliakoff, A.J. Rest and J.J. Turner, J. Chem. Soc. Dalton, (1973) 1321.
- 156 W.E. Carroll and F.J. Lalor, J. Organometal. Chem., 54 (1973) C37; D.R. Fisher and D. Sutton, Can. J. Chem., 51 (1973) 1697; W.E. Carroll and F.J. Lalor, J. Chem. Soc. Dalton, (1973) 1754.
- 157 K.R. Laing, S.D. Robinson and M.F. Utiley, J. Chem. Soc. Dalton, (1973) 2713 and J. Chem. Soc. Chem. Commun., (1973) 176.
- 158 J V. McArdle, A J. Schultz, B.J. Corden and R. Eisenberg, Inorg. Chem., 12 (1973) 1676.
- 159 W.L. Bowden, W.F. Little and T.J. Meyer, J. Amer. Chem. Soc., 95 (1973) 5084.
- 160 R.M. Monarty, K.-N. Chen and J.L. Fuppen, J. Amer. Chem. Soc., 95 (1973) 6489.
- 161 R.M. Moriarty, C.-L. Yeh and K.-N. Chen, Tetrahedron Lett., (1972) 5325.
- 162 A.P. Humphries and S.A.R. Knox, J. Chem. Soc. Chem. Commun., (1973) 326.
- 163 J. Weaver and P. Woodward, J. Chem. Soc. Dalton, (1973) 1439.
- 164 U. Behrens and E. Weiss, J. Organometal. Chem., 59 (1973) 335.
- 165 M.J. Boylan, J. Bellerby, J. Newan and A.R. Manning, J. Organometal. Chem., 47 (1973) C33.
- 166 J.G. Bullitt, F.A. Cotton and T.J. Marks, J. Amer. Chem. Soc., 92 (1970) 3155 and Inorg. Chem., 11 (1972) 671; O.A. Gansow, A.R. Burke and W.D. Vernon, J. Amer. Chem. Soc., 94 (1972) 2550.
- 167 R.D. Adams and F.A. Cotton, J. Amer. Chem. Soc., 95 (1373) 6589.
- 168 R.D. Adams and F.A. Cotton, Inorg. Chim. Acta, 7 (1973) 153.
- 169 R.M. Kirchner, T.J. Marks, J.S. Knstoff and J.A. Ibers, J. Amer. Chem. Soc., 95 (1973) 6602.
- 170 J.S. Kristoff, N.J. Nelson and D.F. Shriver, J. Organometal. Chem., 49 (1973) C82.
- 171 N.E. Kim, N.J. Nelson and D.F. Shriver, Inorg. Chim. Acta, 7 (1973) 393.
- 172 S.W. Ulmer, P.M. Skarstad, J.M. Burlitch and R.E. Hughes, J.Amer. Chem. Soc., 95 (1973) 4469.
- 173 A.E. Crease and P. Legzduns, J. Chem. Soc. Dalton, (1973) 1501.

- 174 B.D. Dombek and R.J. Angelici, Inorg. Chim. Acta, 7 (1973) 345.
- 175 W.E. Williams and F.J. Lalor, J. Chem. Soc. Dalton, (1973) 1329.
- 176 R.H. Reimann and E. Singleton, J. Organometal. Chem., 57 (1973) C75.
- 177 M.E. Gress and R.A. Jacobson, Inorg. Chem., 12 (1973) 1746.
- 178 D.A. Symon and T.C. Waddington, J. Chem. Soc. Dalton, (1973) 1879.
- 179 J.A. Ferguson and T.J. Meyer, Chem. Commun., (1971) 623.
- 180 J.N. Braddock and T.J. Meyer, Inorg. Chem., 12 (1973) 723.
- 181 R.B. King and D.M. Braitsch, J. Organometal. Chem., 54 (1973) 9.
- 182 A.N. Nesmeyanov, M.I. Rybinskaya, V.S. Kaganovich, T.V. Popova and E.A. Petrovskaya, Izv. Akad. Nauk S.S.S.R., Ser, Khim., (1973) 2087.
- 183 R.B. King and M.S. Saran, J. Amer. Chem. Soc., 95 (1973) 1811.
- 184 A.N. Nesmeyanov, N.E. Kolobova, G.K. Znobina, K.N. Anisimov, I.B. Zlotina and M.D. Bargamova, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1973) 2168.
- 185 S.C. Cohen, J. Chem. Soc. Dalton, (1973) 553.
- 186 A.N. Nesmeyanov, L.G. Makarova and V.N. Vinogradov, Izv. Akad. Nauk S.S.S.R., Ser. Khum., (1973) 2796.
- 187 L.I. Zakharkin, L.V. Orlova and L.I. Denisovich, Zh. Obsheb Khum, 42 (1972) 2217.
- 188 H. Brunner and E. Schmidt, J. Organometal. Chem., 50 (1973) 219.
- 189 F.A. Cotton, B.A. Frenz and A. Shaver, Inorg. Chim. Acta, 7 (1973) 161.
- 190 G. Ingletto, E. Tandello, L. di Spio, G. Carturan and M. Graziani, J. Organometal. Chem., 56 (1973) 335.
- 191 C.P. Casey, C.R. Cyr and R.A. Boggs, Synth. Inorg. Met. Org. Chem., 3 (1973) 249.
- 192 A. Sanders, L. Cohen, W.P. Giering, D. Kenedy and C.V. Magatu, J. Amer. Chem. Soc., 95 (1973) 5430.
- 193 P.M. Treichel, J.P. Stenson and J.J. Benedict, Inorg. Chem., 10 (1971) 1183.
- 194 W.M. Butler and J.H. Enemark, J. Organometal. Chem., 49 (1973) 233.
- 195 T.G. Attig, P. Reich-Rohrwig and A. Wojcicki, J. Organometal. Chem., 51 (1973) C21.
- 196 J.J. Alexander and A. Wojcicki, Inorg. Chem., 12 (1973) 74.
- 197 K.M. Nicholas and M. Rosenblum, J. Amer. Chem. Soc., 95 (1973) 4449.
- 198 S.N. Anderson, C.W. Fong and M.D. Johnson, J.Chem. Soc. Chem. Comm., (1973) 1633.
- 199 S.E. Jacobson and A. Wojcicka, J. Amer. Chem. Soc., 95 (1973) 6962
- 200 S.E. Jacobson, P. Reich-Rohrwig and A. Wojcicki, Inorg. Chem., 12 (1973) 717.
- 201 T.C. Flood and D.L. Mules, J. Amer. Chem. Soc., 95 (1973) 6460.
- 202 G.M. Whitesides and D.J. Boschetto, J. Amer. Chem. Soc., 93 (1971) 1529.
- 203 D.W. Lichtenberg and A. Wojcicki, J. Organometal. Chem., 7 (1973) 311.
- 204 S.R. Su and A. Wojcicki, J. Organometal. Chem., 31 (1974) C34; W.P. Giering and M. Rosenblum, J. Amer. Chem. Soc., 93 (1971) 5299.
- 205 M.R. Churchill and S.W.-Y. Ni Chang, J. Amer. Chem. Soc., 95 (1973) 5931.
- 206 S. Raghu and M. Rosenblum, J. Amer. Chem. Soc., 95 (1973) 3060.
- 207 R. Ben-Shoshan and R. Petut, J. Amer. Chem. Soc., 89 (1967) 233.
- 208 Y. Yamamoto and A. Wojcicki, Inorg. Chem., 12 (1973) 1779.
- 209 T. Blackmore, M.I. Bruce, F.G.A. Stone, R.E. Davis and N.V. Raghavan, J. Organometal. Chem., 49 (1973) C35.
- 210 A. Rosan, M. Rosenblum and J. Tancrede, J. Amer. Chem. Soc., 95 (1973) 3062.
- 211 M. Hofler and J. Scheuren, J. Organometal. Chem., 55 (1973) 177.
- 212 R.J.P. Corriu and W.E. Douglas, J. Organometal. Chem., 51 (1973) C3.
- 213 C.S. Cundy and M.F. Lappert, J. Organometal. Chem., 57 (1973) C72.
- 214 R.C. Job and M.D. Curtis, Inorg. Chem., 12 (1973) 2510.
- 215 R.C. Job and M.D. Curtis, Inorg. Chem., 12 (1973) 2514.
- 216 E.W. Abel and M.O. Dunster, J. Organometal. Chem., 49 (1973) 435.
- 217 R.M.G. Roberts, J. Organometal. Chem., 47 (1973) 359.
- 218 C. Ungurenasu, G. Stiubianu and E. Streba, Synth. Inorg. Met. Org. Chem., 3 (1973) 211.
- 219 W. Klau and H. Werner, J. Organometal. Chem., 54 (1973) 331.
- 220 W. Klau and H. Werner, J. Organometal. Chem., 60 (1973) C19.
- 221 J.P. Collman, D.W. Murphy and G. Dolceth, J. Amer. Chem. Soc., 95 (1973) 2687.
- 222 J.P. Coliman, J.K. Hoyano and D.W. Murphy, J. Amer. Chem. Soc., 95 (1973) 3424.
- 223 A.N. Nesmeyanov, L.G. Makarova and V.N. Vinogradova, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1972) 2798, and (1972) 2605.
- 224 R.C. Dobbie and P.R. Mason, J. Chem. Soc. Dalton, (1973) 1124.
- 225 W. Ehri and H. Vahrenkamp, J. Organometal. Chem., 63 (1973) 389, and Chem. Ber., 105 (1973) 2550; H. Vahrenkamp, J. Organometal. Chem., 63 (1973) 399.
- 226 R.J. Haines, A.L. du Preez and C.R. Nolte, J. Organometal. Chem., 55 (1973) 199.
- 227 W.R. Cullen, D.J. Patmore and J.R. Sams, Inorg. Chem., 12 (1973) 867.
- 228 W.R. Cullen, D.J. Patmore, J.R. Sams, M.J. Newlands and L.K. Thompson, Chem. Commun., (1971) 952; F.W.B. Einstein and R.D.G. Jones, Inorg. Chem., 12 (1973) 1690.

- 229 J.L. Davidson and D.W.A. Sharp, J. Chem. Soc. Dalton, (1973) 1957.
- 230 R.Bruce and G.R. Knov, J. Organometal. Cnem., 6 (1966) 67; M. Dekker, G.R. Knov and C.G. Robertson, ibid., 18 (1969) 161; E.D. Schermer and W.H. Baddley, ibid., 27 (1971) 83.
- 231 J.A. de Beer, R.J. Haines, R.Greatrex and J.A. van Wyk, J. Chem. Soc. Dalton, (1973) 2341; P.D. Frisch, M.K. Lloyd, J.A. McCleverty and D. Seddon, J. Chem. Soc. Dalton, (1973) 2268.
- 232 M.R. Churchill, B.G. de Boer, K.L. Kalra, P. Reich-Rohrwig and A. Wojcicki, J Chem. Soc. Chem. Commun., (1972) 981.
- 233 M.R. Churchill, B.G. de Boer and K.L. Kalra, Inorg. Chem., 12 (1973) 1646.
- 234 M.R. Churchill and K.L. Kalra, Inorg. Chem., 12 (1973) 1650.
- 235 G.T. Kubas, T.G. Spiro and A. Terzis, J. Amer. Chem. Soc., 95 (1973) 273; A. Terzis and R. Rivest, Inorg. Chem., 12 (1973) 2132.
- 236 R.J. Haines, J.A. de Beer and R. Greatrex, J. Organometal. Chem., 55 (1973) C30
- 237 L.H. Alı, A. Cox and T.J. Kemp, J. Chem. Soc. Dalton, (1973) 1475.
- 238 D.M. Allen, A. Cox, T.J. Kemp and L.H. Alı, J. Chem. Soc. Dalton, (1973) 1899.
- 239 F.A. Cotton, B.A. Frenz and A.J. White, J. Organometal. Chem., 60 (1973) 147.
- 240 M.J. Mays and P.L. Sears, J. Chem. Soc. Dalton, (1973) 1873.
- 241 J.S. Kristoff and D.F. Shriver, Inorg. Chem., 12 (1973) 1788.
- 242 E.W. Abel and S. Moorhouse, J. Chem. Soc. Dalton, (1973) 1706.
- 243 J.P. Brennan, R.N. Gnmes, R. Schaeffer and L.G. Sneddon, Inorg. Chem., 12 (1973) 2266.
- 244 R.N. Grimes, J. Amer. Chem. Soc., 93 (1971) 261; D.A. Franz, V.R. Miller and R.N. Grimes, J. Amer. Chem. Soc., 94 (1972) 412.
- 245 L.G. Sneddon, D.C. Beer and R.N. Grimes, J. Amer. Chem. Soc., 95 (1973) 6623.
- 246 D.F. Dustin, W.J. Evans and M.F. Hawthome, J. Chem. Soc. Chem. Commun., (1973) 806.
- 247 D.C. Beer and L.J. Todd, J. Organometal. Chem., 55 (1973) 363.
- 248 W.J. Evans, G.B. Dunks and M.F. Hawthorne, J. Amer. Chem. Soc., 95 (1973) 4565.
- 249 J Plesek, B. Stibr and S. Hermaner, Synth. Inorg. Met. Org. Chem., 3 (1973) 291.
- 250 D.F. Dustin, G.B. Dunks and M.F. Hawthorne, J. Amer. Chem. Soc., 95 (1973) 1109.
- 251 R. Buehler, R. Geist, R. Muednich and H. Plieninger, Tetrahedron Lett., (1973) 1919.
- 252 R.B. King, I. Haiduc and C.W. Eavenson, J. Amer Chem. Soc. 95 (1973) 2508.
- 253 H.A. Brune, G. Hotlbeck, H. Roettele and U. Tanger, Z. Naturforsch. B, 28 (1973) 68.
- 254 T.M. Yamamoto, T. Souichi and Y. Odaira, J. Chem. Soc. Perkin 1, (1973) 138.
- 255 O.L. Chapman, J. Pacansky and P.W. Wojtkowski, J. Chem. Soc. Chem. Commun., (1973) 681.
- 256 A. Efraty, R. Bystrek, J. A. Geaman, M.H.A. Huang and R.H. Herber, J. Organometal. Chem., 55 (1973) C33.
- 257 P. Marcincal, N. Hanour-Guisez and E. Cuingnet, Trav Soc. Pharm. Montpellier, 33 (1973) 281.
- 258 R. Damrauer and T.E. Rutledge, J. Org. Chem., 38 (1973) 3330.
- 259 R.H. Grubbs and R.A. Grey, J. Chem. Soc. Chem. Commun., (1973) 76.
- 260 P. Reeves, T. Devon and R. Pettit, J. Amer. Chem. Soc., 91 (1969) 5888.
- 261 R.H. Grubbs and R.A. Grey, J. Amer. Chem. Soc., 95 (1973) 5765.
- 262 E.K.G. Schmidt, Angew. Chem., 85 (1973) 820.
- 263 W.E. Billups, L. Plin and B.A. Baker, J. Organometal. Chem., 61 (1973) C55.
- 264 I.S. Krull, J. Organometal. Chem., 57 (1973) 363.
- 265 D.J. Ehntholt and R.C. Kerber, Chem. Commun , (1970) 1451.
- 266 M.R. Churchill and B.G de Boer, Inorg. Chem., 12 (1973) 525.
- 267 A.N. Nesmeyanov, N.A. Vol'kenau, L.S. Shilovtseva and V.A. Petrakova, J. Organometal. Chem., 61 (1973) 329.
- 268 R. Middleton, J.R. Hull, S.R. Sumpson, C.H. Tomlinson and P.L. Tumms, J. Chem. Soc. Dalton, (1973) 120.
- 269 D.J. O'Sullivan and F.J. Lalor, J. Organometal. Chem., 57 (1973) C58.
- 270 R.J. Restivo and G. Ferguson, J. Chem. Soc. Chem. Commun., (1973) 847.
- 271 A.E. Crease and P. Legzdins, J. Chem. Soc. Chem. Commun., (1973) 775.
- 272 E.W. Abel and M.O. Dunster, J. Chem. Soc. Dalton, (1973) 98.
- 273 F.A. Cotton and J.A. McCleverty, Inorg. Chem., 3 (1964) 1398.
- 274 T. Kruck and L. Knoll, Z. Naturforsch. B, 28 (1973) 34.
- 275 M. Minasyanis, Yu.T. Struchkov and V.G. Andrianov, Uch. Zap. Erevan Gos. Univ., Estestv Nauki, (1972) 27; Zhur. Khim., (1973) Abstr. No. 7B530.
- 276 E.W. Randall, E. Rosenberg and L. Milone, J. Chem. Soc. Dalton, (1973) 1672.
- 277 A.N. Nesmeyanov, Yu.A. Ustynynk, I.I. Knitskaya and G.A. Schembelov, J. Organometal. Chem., 14 (1968) 395.
- 278 G. Paliani, A. Poletti, G. Cardaci, S.M. Murgia and R. Cataliotti, J. Organometal, Chem., 60 (1973) 157.
- 279 T.H. Whitesides, R.W. Arhart and R.W. Slauen, J. Amer. Chem. Soc., 95 (1973) 5792.
- 280 M. Green and B. Lewis, J. Chem. Soc. Chem. Commun., (1973) 114.

- 281 A. Bond, M. Green and S.H. Taylor, J. Chem. Soc. Chem. Commun., (1973) 112.
- 282 C.P. Casey and C R. Cyr, J. Amer. Chem. Soc , 95 (1973) 2248.
- 283 M. Cooke, R.J. Goodfellow, M. Green and G. Parker, J. Chem. Soc., A, (1971) 16.
- 234 R.A. Marsh, J. Howard and P. Woodward, J. Chem. Soc. Dalton, (1973) 778.
- 285 B.F.G. Johnson, J. Lewis and M.V. Twigg, J. Organometal. Chem., 52 (1973) C31.
- 286 R. Aumann, J. Organometal. Chem., 47 (1973) C29.
- 287 R. Aumann, Angew. Chem. Int. Ed. Engl., 12 (1973) 574.
- 288 A. Eisenstadt, J. Organometal. Chem., 60 (1973) 335.
- 289 M. Green, S. Heathcock and D.C. Wood, J. Chem. Soc. Dalton, (1973) 1564.
- 290 M. Green, S. Tolson, J. Weaver, D.C. Wood and P. Woodward, Chem. Commun., (1971) 222; J. Weaver and P. Woodward, J. Chem. Soc., A, (1971) 3521.
- 291 J.A.D. Jeffreys, C.M. Willis, I.C. Robertson, G. Ferguson and J.G. Sime, J. Chem. Soc. Dalton, (1973) 749.
- 292 F.A. Cotton, B.A. Frenz, G. Deganello and A. Shaver, J. Organometal. Chem., 50 (1973) 227.
- 293 F.A. Cotton, A. Davison, T J. Marks and A. Musco, J. Amer. Chem. Soc., 91 (1969) 6598; F.A. Cotton and T.J. Marks, J. Organometal. Chem., 19 (1969) 237.
- 294 M. Evans, M. Hursthouse, E.W. Randall, E. Rosenberg, L. Milone and M. Valle, J. Chem. Soc. Chem. Commun., (1972) 545.
- 295 T H. Whitesides and R.A. Budnik, J. Chem. Soc. Chem. Commun., (1973) 87.
- 296 M.R. Churchill and J. Wormald, Inorg. Chem., 12 (1973) 191.
- 297 V.G. Shubin, R.N. Berezina and V.N. Piottukh-Peletski, J. Organometal. Chem., 54 (1973) 239.
- 298 J. Evans, D.V. Howe, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 61 (1973) C48.
- 299 L.A.P. Kane-Magure and C.A. Mansfield, J. Chem. Soc. Chem. Commun., (1973) 540.
- 300 A.J. Birch, K.B. Chamberlain and D.J. Thompson, J. Chem. Soc. Perkin I, (1973) 1900.
- 301 R. Bau, J.C. Burt, S.A.R. Knox, R.M. Laine, R P. Philips and F.G.A Stone, J. Chem. Soc. Chem Commun., (1973) 726
- 302 A. Brookes, J. Howard, S.A.R. Knox, F.G.A. Stone and P. Woodward, J. Chem. Soc. Chem. Commun., (1973) 587.
- 303 W. Weidemueller and K. Hafner, Angew. Chem., 85 (1973) 958.
- 304 F.W. Grevels and E. Koerner von Gustorf, Liebigs Ann. Chim., 11 (1973) 1821.
- 305 B. Beagley, D.G. Schmidling and D.W J. Cruikshank, Acta Crystallogr. B, 29 (1973) 1499.
- 306 J.E. McCaskie, P.L. Chang, T.R. Nelsen and D.C. Dittmer, J. Org. Chem., 38 (1973) 3963.
- 307 I.S. Krull, J. Organometal. Chem., 57 (1973) 373.
- 308 D.J. Darensbourg, J.E. Tappan and B.J. Marwedel, J. Organometal. Chem., 54 (1973) C39
- 309 T. Kruck and L. Knoll, Chem. Ber., 106 (1973) 3578.
- 310 R.E. Graf and C.P. Lillya, J. Chem. Soc. Chem. Commun., (1973) 271.
- 311 D. Ehntholt, A. Rosan and M. Rosenblum, J. Organometal. Chem., 56 (1973) 315.
- 312 T.A. Stephenson, E.S. Switkes and L. Ruiz-Ramirez, J. Chem. Soc. Dalton, (1973) 2112.
- 313 L. Ruiz-Ramirez, T.A. Stephenson and E.S. Switkes, J. Organometal. Chem., 49 (1973) C77.
- 314 A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 49 (1973) C33.
- 315 A.J.P. Domingos, B.F.G. Johnson, J. Lewis and G.M. Sheldrick, J. Chem. Soc. Chem. Commun., (1973) 913.
- 316 F.A. Cotton and W T. Edwards, J. Amer. Chem. Soc., 90 (1968) 5412.
- 317 R.E. Grai and C.P. Lullya, J. Organometal. Chem., 47 (1973) 413.
- 318 S. Sarel, R. Ben-Shoshan and B. Kirson, Isr. J. Chem., 10 (1972) 787.
- 319 N.S. Nametkin, A.L. Nekhaev, V.D. Tyunn and V.N. Dontsova, Izv. Akad. Nauk S.S S.R., Ser. Khim., (1973) 959.
- 320 T. Kruck, L. Knoll and J. Laufenberg, Chem. Ber., 106 (1973) 697.
- 321 L.G. Kuz'mina, Yu. T. Struchkov and A.I. Nekhaev, Zh. Strukt. Khim., 13 (1972) 1115.
- 322 P. McArdle and H. Sherlock, J. Organometal. Chem., 52 (1973) C29.
- 323 M. Anderson, A.D.H. Clague, L.P. Blaauw and P.A. Couperus, J. Organometal. Chem., 56 (1973) 307
- 324 A.N. Nesmeyanov, L.V. Rybin, N.T. Gubenko, P.V. Petrovsku and M.I. Rybinskaya, Zh. Obshch. Khim., 42 (1972) 2473.
- 325 A.M. Brodie, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton, (1973) 1997.
- 326 K. Takahashi, M. Iwanami, A. Tsai, P.L. Chang, R.L. Harlow, L.E. Harns, J.E. McCaskie, C.E. Pfluger and D.C. Dittmer, J. Amer. Chem. Soc., 95 (1973) 6113.
- 327 R.L. Harlow and C.E. Pfluger, Acta Crystallogr. B, 29 (1973) 2633.
- 328 N.S. Nametkin, V.D. Tyurin, M.N. El-Laddavi and N.A. Gromasheva, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1973) 2170.
- 329 N.S. Nametkin, A.I. Nekhaev, V.D. Tyunn and S.P. Gubin, Neftekhimiya, 13 (1973) 130.
- 330 V.N. Prottukh-Peletsku, R.N. Berezina, A.I. Rezvukhin and V.G. Shubin, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1973) 2083.
- 331 A.J. Birch and D.H. Williamson, J. Chem. Soc. Perkin I, (1973) 1892.

- 332 R.N. Berezina, E.P. Yablohova and V.G. Shubin, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1973) 2273.
- 333 F.A. Cotton and G. Deganello, J. Amer. Chem. Soc., 95 (1973) 396.
- 334 F.A. Cotton, V.W. Day, B.A. Frenz, K.I. Hardcastle and J.M. Troup, J. Amer. Chem. Soc., 95 (1973) 4522.
- 335 H. Alper and C.C. Huang, J. Organometal. Chem., 50 (1973) 213.
- 336 J.L. Calderon, A. Shaver and F.A. Cotton, J. Organometal. Chem., 57 (1973) 121.
- 337 P. Crews, J. Amer. Chem. Soc., 95 (1973) 637.
- 338 J. Müller, G.E. Herberich and H. Müller, J. Organometal. Chem., 55 (1973) 165.
- 339 O.P. Anderson and M.C.R. Symons, Inorg. Chem., 12 (1973) 1932.
- 340 T.H. Whitesides and J.P. Neilan, J. Amer. Chem Soc., 95 (1973) 5811.
- 341 T.H. Whitesides and R.W. Arhart, J. Amer. Chem. Soc., 93 (1971) 5296.
- 342 D.V. Banthorpe, H. Fitton and J. Lewis, J. Chem. Soc. Perkin 1, (1973) 2051.
- 343 P. McArdle, J Chem. Soc. Chem. Commun., (1973) 482.
- 344 A. Brookes, J. Howard, S.A.R. Knox, V. Riera, F.G.A. Stone and P. Woodward, J. Chem. Soc. Chem. Commun., (1973) 727.
- 345 G. Deganello, J. Organometal. Chem., 59 (1973) 329.
- 346 A.J. Carty, R.F. Hobson, H.A. Patel and V. Smeckus, J. Amer. Chem. Soc., 95 (1973) 6835
- 347 A. de Cian, P.M. L'Huillier and R. Weiss, Bull Chim. Soc. France, Pt 1 (1973) 457.
- 348 R.C. Kerber and D.J. Ehntholt, J. Amer. Chem. Soc., 95 (1973) 2927
- 349 M. Brookhart, N.M. Lippman and E.J. Reardon, Jr., J. Organometal. Chem., 54 (1973) 247.
- 350 F.A. Cotton and G. Deganello, J. Organometal. Chem., 38 (1972) 147; F.A. Cotton, B.A. Frenz,
 G. Deganello and A. Shaver, ibid, 50 (1973) 227; F.A. Cotton, B.A. Frenz, J.M. Troup and G.
 Deganello, ibid., 59 (1973) 317, F.A. Cotton and J.M. Troup, J. Amer. Chem. Soc., 95 (1973) 3798.
- 351 J.E. Alsop and R. Davis, J. Chem. Soc. Dalton, (1973) 1686.
- 352 G. Allegra, A. Colombo and E.R. Mognaschi, Gazz. Chim. Ital., 102 (1972) 1060.
- 353 R.R. Schrock and J. Lewis, J. Amer. Chem. Soc., 95 (1973) 4102.
- 354 E.O. Fischer and J. Müller, Chem. Ber., 96 (1963) 3217.
- 355 G Deganello, H. Maltz and J. Kozarich, J. Organometal. Chem., 60 (1973) 323; E.J. Reardon, Jr. and M. Brookhart, J. Amer. Chem. Soc., 95 (1973) 4311.
- 356 M.J. Bennett, W.A.G. Graham, R.P. Stewart, Jr. and R.M. Tuggle, Inorg. Chem., 12 (1973) 2944
- 357 D.M. Roe and A.G. Massey, J. Organometal. Chem., 23 (1970) 547.
- 358 Y. Watanabe, T. Mitsudo, M. Yamashita, M. Tanaka and Y. Takegami, Chem. Lett., (1973) 475.
- 359 M.R. Wiles and A.G. Massey, J. Organometal. Chem., 47 (1973) 423.
- 360 H.B. Chin and R. Bau, J. Amer. Chem. Soc , 95 (1973) 5068.
- 361 R.B. King and M.N. Ackermann, J. Organometal. Chem., 60 (1973) C57.
- 362 H. Alper and A.S.K. Chan, J. Organometal. Chem., 61 (1973) C59.
- 363 M.I. Bruce, B.L. Goodall and F.G.A. Stone, J. Organometal. Chem., 60 (1973) 343
- 364 P.G. Douglas and B L. Shaw, J. Chem. Soc. Dalton, (1973) 2078
- 365 E.W. Ainscough, T.A. James, S.D. Robinson and J.N. Wingfield, J. Organometal. Chem., 60 (1973) C63.
- 366 H.J. Spiegl, G. Groh and H.J. Berthold, Z. Anorg. Allg. Chem., 398 (1973) 225.
- 367 K. Jacob, I. Wiswedel, T. Zeine and K.-H. Thiele, Z. Anorg. Allg. Chem., 402 (1973) 193.
- 368 T. Yamamoto and A. Yamamoto, J. Organometal, Chem., 57 (1973) 127.
- 369 V.L. Goedken, S.-M. Peng and A.Y. Park, J. Amer. Chem. Soc., 96 (1974) 285.
- 370 R. Taube and D. Steinborn, J. Organometal. Chem., 65 (1974) C9.
- 371 A.P. Ginsberg and W.E. Lindsell, Inorg. Chem., 12 (1973) 1983.
- 372 B. Cehnkaya, P. Dixneuf and M.F. Lappert, J. Chem. Soc Chem. Commun., (1973) 206.
- 373 M.Y. Darensbourg, H.L. Conder, D.J. Darensbourg and C. Hasday, J. Amer. Chem. Soc, 95 (1973) 5919.
- 374 D.R. Fahey, J. Org. Chem., 38 (1973) 3343.
- 375 D.R. Fahey, J. Org. Chem., 38 (1973) 80.
- 376 R.W. Mitchell, A. Spencer and G. Wilkinson, J. Chem. Soc. Dalton, (1973) 846.
- 377 A.G. Hinze, Rec. Trav. Chim., 92 (1973) 542.
- 378 R. Iwata and I. Ogata, Tetrahedron, 29 (1973) 2753.
- 379 A.N. Nesmeyanov, G.P. Zol'nikova, G.M. Babakhina, I.I. Kritskaya and G.G. Yakobson, Zh. Obshch. Khim., 43 (1973) 2007.
- 380 J P. Collman and N.W. Hoffman, J. Amer. Chem. Soc., 95 (1973) 2689.
- 381 J.P. Collman, S.R. Winter and R.G. Komoto, J. Amer. Chem. Soc., 95 (1973) 249.
- 382 R. Noyon, K. Yokoyama and Y. Hayakawa, J. Amer. Chem. Soc., 95 (1973) 2722.
- 383 R. Noyon, Y. Hayakawa, S. Makino, N. Hayakawa and H. Takaya, J Amer. Chem. Soc., 95 (1973) 4103.
- 384 K. Kinugasa and T. Agawa, J. Organometal. Chem., 51 (1973) 329.
- 385 W.A. Genco, R.A. Partis and H. Alper, J. Org. Chem., 38 (1973) 4365.
- 386 E.T. Chukovskaya, M.A. Rozhkova and R K. Friedlina, Dokl. Akad Nauk S S S R., 212 (1973) 382.